Java tutorial
/*************************************************************************** * Copyright (c) 2016 the WESSBAS project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ***************************************************************************/ package net.sf.markov4jmeter.behaviormodelextractor.extraction.transformation.clustering; import net.sf.markov4jmeter.behavior.BehaviorMix; import net.sf.markov4jmeter.behavior.BehaviorMixEntry; import net.sf.markov4jmeter.behavior.BehaviorModelAbsolute; import net.sf.markov4jmeter.behavior.BehaviorModelRelative; import net.sf.markov4jmeter.behavior.UseCaseRepository; import net.sf.markov4jmeter.behaviormodelextractor.CommandLineArgumentsHandler; import net.sf.markov4jmeter.behaviormodelextractor.extraction.ExtractionException; import net.sf.markov4jmeter.behaviormodelextractor.extraction.transformation.ABMToRBMTransformer; import weka.clusterers.ClusterEvaluation; import weka.clusterers.XMeans; import weka.core.DistanceFunction; import weka.core.EuclideanDistance; import weka.core.Instance; import weka.core.Instances; /** * This class represents a <i>xmeans</i> clustering strategy. * * @author Christian Voegele (voegele@fortiss.org) * @version 1.0 */ public class XMeansClusteringStrategy extends AbstractClusteringStrategy { /* ************************** public methods ************************** */ /** * {@inheritDoc} * * <p> * This method is specialized for <b>xmeans</b> clustering. */ @Override public BehaviorMix apply(final BehaviorModelAbsolute[] behaviorModelsAbsolute, final UseCaseRepository useCaseRepository) { final ABMToRBMTransformer abmToRbmTransformer = new ABMToRBMTransformer(); // Behavior Mix to be returned; final BehaviorMix behaviorMix = this.createBehaviorMix(); try { // Returns a valid instances set, generated based on the absolut // behavior models Instances instances = getInstances(behaviorModelsAbsolute); // XMeans --> Weka XMeans xmeans = new XMeans(); if (CommandLineArgumentsHandler.getSeedValue() != null) { xmeans.setSeed(Integer.parseInt(CommandLineArgumentsHandler.getSeedValue())); } // distance function DistanceFunction euclideanDistance = new EuclideanDistance(); // String[] options = new String[1]; // options[0] = "-D"; // euclideanDistance.setOptions(options); euclideanDistance.setInstances(instances); xmeans.setDistanceF(euclideanDistance); // DistanceFunction manhattanDistance = new ManhattanDistance(); // String[] options = new String[1]; // options[0] = "-D"; // manhattanDistance.setOptions(options); // manhattanDistance.setInstances(instances); // xmeans.setDistanceF(manhattanDistance); int[] clustersize = null; // create new assignments int[] assignments = new int[instances.numInstances()]; // get number of clusters to be generated. int numberOfClustersMin = Integer.parseInt(CommandLineArgumentsHandler.getNumberOfClustersMin()); int numberOfClustersMax = 0; if (CommandLineArgumentsHandler.getNumberOfClustersMax() != "") { numberOfClustersMax = Integer.parseInt(CommandLineArgumentsHandler.getNumberOfClustersMax()); } else { numberOfClustersMax = numberOfClustersMin; } // clustering xmeans.setMinNumClusters(numberOfClustersMin); xmeans.setMaxNumClusters(numberOfClustersMax); // build cluster xmeans.buildClusterer(instances); ClusterEvaluation clusterEvaluation = new ClusterEvaluation(); clusterEvaluation.setClusterer(xmeans); clusterEvaluation.evaluateClusterer(instances); // clusterSize clustersize = new int[xmeans.getClusterCenters().numInstances()]; // set assignments and clustersize for (int s = 0; s < instances.numInstances(); s++) { assignments[s] = xmeans.clusterInstance(instances.instance(s)); clustersize[xmeans.clusterInstance(instances.instance(s))]++; } ClusteringMetrics clusteringMetrics = new ClusteringMetrics(); clusteringMetrics.calculateInterClusteringSimilarity(xmeans.getClusterCenters()); clusteringMetrics.calculateIntraClusteringSimilarity(xmeans.getClusterCenters(), instances, assignments); clusteringMetrics.calculateBetas(); clusteringMetrics.printErrorMetricsHeader(); clusteringMetrics.printErrorMetrics(xmeans.getClusterCenters().numInstances()); clusteringMetrics.printClusteringMetrics(clustersize, assignments, instances); // clusteringMetrics.printClusterAssignmentsToSession(assignments, // xmeans.getClusterCenters().numInstances()); Instances resultingCentroids = xmeans.getClusterCenters(); // for each centroid instance, create new behaviorModelRelative for (int i = 0; i < resultingCentroids.numInstances(); i++) { Instance centroid = resultingCentroids.instance(i); // create a Behavior Model, which includes all vertices only; // the vertices are associated with the use cases, and a // dedicated // vertex that represents the final state will be added; final BehaviorModelAbsolute behaviorModelAbsoluteCentroid = this .createBehaviorModelAbsoluteWithoutTransitions(useCaseRepository.getUseCases()); // install the transitions in between vertices; this.installTransitions(behaviorModelsAbsolute, behaviorModelAbsoluteCentroid, centroid, assignments, i); // convert absolute to relative behaviorModel final BehaviorModelRelative behaviorModelRelative = abmToRbmTransformer .transform(behaviorModelAbsoluteCentroid); // relative Frequency of cluster i double relativeFrequency = (double) clustersize[i] / (double) instances.numInstances(); // create the (unique) Behavior Mix entry to be returned; final BehaviorMixEntry behaviorMixEntry = this.createBehaviorMixEntry( AbstractClusteringStrategy.GENERIC_BEHAVIOR_MODEL_NAME, relativeFrequency, // relative frequency; behaviorModelRelative); // add to resulting behaviorMix behaviorMix.getEntries().add(behaviorMixEntry); } return behaviorMix; } catch (ExtractionException e) { e.printStackTrace(); } catch (Exception e) { e.printStackTrace(); } // if any error occurs, an ExtractionExeption should be thrown, // indicating the error that occurred; // the classes "NoClusteringStrategy" and "SimpleClusteringStrategy" // should give an idea for handling the Behavior Models and how to // use the helping methods of the (abstract) parent class. return behaviorMix; } }