Java tutorial
package net.sf.dsp4j.octave_3_2_4.m.polynomial; import java.util.Arrays; import org.apache.commons.math3.complex.Complex; /** ## Copyright (C) 1994, 1995, 1996, 1997, 1999, 2000, 2005, 2006, 2007, ## 2008, 2009 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} poly (@var{a}) ## If @var{a} is a square @math{N}-by-@math{N} matrix, @code{poly (@var{a})} ## is the row vector of the coefficients of @code{det (z * eye (N) - a)}, ## the characteristic polynomial of @var{a}. As an example we can use ## this to find the eigenvalues of @var{a} as the roots of @code{poly (@var{a})}. ## @example ## @group ## roots(poly(eye(3))) ## @result{} 1.00000 + 0.00000i ## @result{} 1.00000 - 0.00000i ## @result{} 1.00000 + 0.00000i ## @end group ## @end example ## In real-life examples you should, however, use the @code{eig} function ## for computing eigenvalues. ## ## If @var{x} is a vector, @code{poly (@var{x})} is a vector of coefficients ## of the polynomial whose roots are the elements of @var{x}. That is, ## of @var{c} is a polynomial, then the elements of ## @code{@var{d} = roots (poly (@var{c}))} are contained in @var{c}. ## The vectors @var{c} and @var{d} are, however, not equal due to sorting ## and numerical errors. ## @seealso{eig, roots} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 24 December 1993 ## Adapted-By: jwe */ public class Poly { public static Complex[] poly(Complex[] x) { Complex[] y; if (x.length == 0) { return new Complex[] { Complex.ONE }; } y = new Complex[x.length + 1]; Arrays.fill(y, Complex.ZERO); y[0] = Complex.ONE; for (int j = 1; j < y.length; j++) { for (int i = j; i >= 1; i--) { y[i] = y[i].subtract(x[j - 1].multiply(y[i - 1])); } } return y; } public static double[] poly(double[] x) { double[] y; if (x.length == 0) { return new double[] { 1.0 }; } y = new double[x.length + 1]; y[0] = 1.0; for (int j = 1; j < y.length; j++) { for (int i = j; i >= 1; i--) { y[i] = y[i] - x[j - 1] * y[i - 1]; } } return y; } public static double[] poly(double[][] x) { if (x.length == 0) { return new double[] { 1.0 }; } int xLenght = x.length; for (int i = 0; i < xLenght; i++) { if (x[i].length != xLenght) { throw new RuntimeException(); } } // return poly(eig(x)); return null; } }