Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * MacroAUC.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.evaluation.measure; import weka.classifiers.evaluation.ThresholdCurve; import weka.core.Instances; import weka.core.Utils; /** * Implementation of the macro-averaged AUC measure. * * @author Grigorios Tsoumakas * @version 2010.12.10 */ public class MacroAUC extends LabelBasedAUC { /** * Creates a new instance of this class * * @param numOfLabels the number of labels */ public MacroAUC(int numOfLabels) { super(numOfLabels); } public String getName() { return "Macro-averaged AUC"; } public double getValue() { double[] labelAUC = new double[numOfLabels]; for (int i = 0; i < numOfLabels; i++) { ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(m_Predictions[i], 1); labelAUC[i] = ThresholdCurve.getROCArea(result); } return Utils.mean(labelAUC); } }