meka.classifiers.multilabel.incremental.CCUpdateable.java Source code

Java tutorial

Introduction

Here is the source code for meka.classifiers.multilabel.incremental.CCUpdateable.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

package meka.classifiers.multilabel.incremental;

import meka.classifiers.multilabel.CC;
import meka.classifiers.multilabel.IncrementalMultiLabelClassifier;
import meka.core.MLUtils;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.UpdateableClassifier;
import weka.classifiers.trees.HoeffdingTree;
import weka.core.Instance;
import weka.core.Instances;

import java.util.Arrays;
import java.util.Random;

/**
 * CCUpdateable.java - Updateable version of CC.
 *
 * A CC method which can be updated incrementally (assuming an incremental base classifier).
 * @see CC
 * @author       Jesse Read
 * @version    September, 2011
 */
public class CCUpdateable extends CC implements IncrementalMultiLabelClassifier {

    /** for serialization. */
    private static final long serialVersionUID = 2856976982562474367L;

    public CCUpdateable() {
        // default classifier for GUI
        this.m_Classifier = new HoeffdingTree();
    }

    @Override
    protected String defaultClassifierString() {
        // default classifier for CLI
        return "weka.classifiers.trees.HoeffdingTree";
    }

    @Override
    public String globalInfo() {
        return "Updateable CC\nMust be run with an Updateable base classifier.";
    }

    protected ULink root = null;

    protected class ULink {

        private ULink next = null;
        private AbstractClassifier classifier = null;
        public Instances _template = null;
        private int index = -1;
        private int value = -1;
        private int excld[]; // to contain the indices to delete
        private int j = 0;

        public ULink(int chain[], int j, Instances train) throws Exception {
            this.j = j;

            this.index = chain[j];

            // sort out excludes [4|5,1,0,2,3]
            this.excld = Arrays.copyOfRange(chain, j + 1, chain.length);
            // sort out excludes [0,1,2,3,5]
            Arrays.sort(this.excld);

            this.classifier = (AbstractClassifier) AbstractClassifier.forName(getClassifier().getClass().getName(),
                    ((AbstractClassifier) getClassifier()).getOptions());

            Instances new_train = new Instances(train);

            // delete all except one (leaving a binary problem)
            if (getDebug())
                System.out.print(" " + this.index);
            new_train.setClassIndex(-1);
            // delete all the attributes (and track where our index ends up)
            this.value = chain[j];
            int c_index = value;
            for (int i = excld.length - 1; i >= 0; i--) {
                new_train.deleteAttributeAt(excld[i]);
                if (excld[i] < this.index)
                    c_index--;
            }
            new_train.setClassIndex(c_index);

            _template = new Instances(new_train, 0);

            this.classifier.buildClassifier(new_train);
            new_train = null;

            if (j + 1 < chain.length)
                next = new ULink(chain, ++j, train);
        }

        protected void update(Instance x) throws Exception {

            Instance x_ = (Instance) x.copy();
            x_.setDataset(null);

            // delete all except one (leaving a binary problem)
            // delete all the attributes (and track where our index ends up)
            int c_index = this.value;
            for (int i = excld.length - 1; i >= 0; i--) {
                x_.deleteAttributeAt(excld[i]);
                if (excld[i] < this.index)
                    c_index--;
            }
            x_.setDataset(this._template);

            ((UpdateableClassifier) this.classifier).updateClassifier(x_);

            if (next != null)
                next.update(x);
        }

        protected void classify(Instance test) throws Exception {
            // copy
            Instance copy = (Instance) test.copy();
            copy.setDataset(null);

            // delete attributes we don't need
            for (int i = excld.length - 1; i >= 0; i--) {
                copy.deleteAttributeAt(this.excld[i]);
            }

            //set template
            copy.setDataset(this._template);

            //set class
            test.setValue(this.index, (int) (this.classifier.classifyInstance(copy)));

            //carry on
            if (next != null)
                next.classify(test);
        }

        @Override
        public String toString() {
            return (next == null) ? String.valueOf(this.index) : String.valueOf(this.index) + ">" + next.toString();
        }

    }

    @Override
    public void buildClassifier(Instances D) throws Exception {
        testCapabilities(D);

        int L = D.classIndex();

        int indices[] = retrieveChain();
        if (indices == null) {
            indices = MLUtils.gen_indices(L);
            MLUtils.randomize(indices, new Random(m_S));
        }
        if (getDebug())
            System.out.print(":- Chain (");
        root = new ULink(indices, 0, D);
        if (getDebug())
            System.out.println(" ) -:");
    }

    @Override
    public void updateClassifier(Instance x) throws Exception {
        if (root != null)
            root.update(x);
        else
            throw new Exception("Train to update chain, but chain not build yet");
    }

    @Override
    public double[] distributionForInstance(Instance x) throws Exception {
        int L = x.classIndex();
        root.classify(x);
        return MLUtils.toDoubleArray(x, L);
    }

    public static void main(String args[]) {
        IncrementalEvaluation.runExperiment(new CCUpdateable(), args);
    }

}