Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package meka.classifiers.multilabel; import meka.core.SuperLabelUtils; import weka.classifiers.AbstractClassifier; import weka.core.Instances; import weka.core.RevisionUtils; import java.util.Arrays; /** * HASEL - Partitions labels into subsets based on the dataset defined hierarchy. * Note: assuming that a <code>.</code> (fullstop/period) in the attribute names defines hierarchical branches, e.g., <code>Europe.Spain</code>. * @author Jesse Read * @version June 2014 */ public class HASEL extends RAkELd { /** for serialization. */ private static final long serialVersionUID = -6208388889440497988L; /** * Description to display in the GUI. * * @return the description */ @Override public String globalInfo() { return "Partitions labels into subsets based on the dataset defined hierarchy (assuming that a '.' in the attribute names defines hierarchical branches, e.g., \"Europe.Spain\")."; } @Override public void buildClassifier(Instances D) throws Exception { int L = D.classIndex(); int N = D.numInstances(); // Get partition from dataset hierarchy kMap = SuperLabelUtils.getPartitionFromDatasetHierarchy(D); m_M = kMap.length; m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_M); m_InstancesTemplates = new Instances[m_M]; for (int i = 0; i < m_M; i++) { if (getDebug()) System.out.println("Building model " + (i + 1) + "/" + m_M + ": " + Arrays.toString(kMap[i])); Instances D_i = SuperLabelUtils.makePartitionDataset(D, kMap[i]); m_Classifiers[i].buildClassifier(D_i); m_InstancesTemplates[i] = new Instances(D_i, 0); } } @Override public String getRevision() { return RevisionUtils.extract("$Revision: 9117 $"); } public static void main(String args[]) { ProblemTransformationMethod.evaluation(new HASEL(), args); } }