Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or GITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Copyright (C) 2012 James Jesensky */ package jjj.asap.sas.models1.job; import java.io.FileNotFoundException; import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList; import java.util.List; import java.util.Queue; import java.util.concurrent.Future; import jjj.asap.sas.util.Bucket; import jjj.asap.sas.util.Job; import jjj.asap.sas.util.Progress; import jjj.asap.sas.weka.RegressionModelBuilder; import weka.classifiers.AbstractClassifier; import weka.classifiers.Classifier; import weka.classifiers.SingleClassifierEnhancer; import weka.classifiers.functions.LinearRegression; import weka.classifiers.functions.PLSClassifier; import weka.classifiers.functions.SGD; import weka.classifiers.meta.AdditiveRegression; import weka.classifiers.meta.RandomSubSpace; import weka.classifiers.trees.DecisionStump; import weka.classifiers.trees.REPTree; import weka.core.SelectedTag; /** * Builds a bucket of basic models */ public class RGramModels extends Job { private static final SelectedTag M5 = new SelectedTag(LinearRegression.SELECTION_M5, LinearRegression.TAGS_SELECTION); private static final SelectedTag NONE = new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION); /** * args[0] - input bucket * args[1] - output bucket */ public static void main(String[] args) throws Exception { Job job = new RGramModels(args[0], args[1]); Job.log("ARGS", Arrays.toString(args)); job.start(); } private String inputBucket; private String outputBucket; public RGramModels(String inputBucket, String outputBucket) { super(); this.inputBucket = inputBucket; this.outputBucket = outputBucket; } @Override protected void run() throws Exception { // validate args if (!Bucket.isBucket("datasets", inputBucket)) { throw new FileNotFoundException(inputBucket); } if (!Bucket.isBucket("models", outputBucket)) { throw new FileNotFoundException(outputBucket); } // create prototype classifiers List<Classifier> models = new ArrayList<Classifier>(); //SGD sgd = new SGD(); //sgd.setDontNormalize(true); //sgd.setLossFunction(new SelectedTag(SGD.SQUAREDLOSS,SGD.TAGS_SELECTION)); LinearRegression m5 = new LinearRegression(); m5.setAttributeSelectionMethod(M5); //models.add(sgd); models.add(m5); LinearRegression lr = new LinearRegression(); lr.setAttributeSelectionMethod(NONE); RandomSubSpace rss = new RandomSubSpace(); rss.setClassifier(lr); rss.setNumIterations(30); models.add(rss); AdditiveRegression boostedStumps = new AdditiveRegression(); boostedStumps.setClassifier(new DecisionStump()); boostedStumps.setNumIterations(1000); AdditiveRegression boostedTrees = new AdditiveRegression(); boostedTrees.setClassifier(new REPTree()); boostedTrees.setNumIterations(100); models.add(boostedStumps); models.add(boostedTrees); models.add(new PLSClassifier()); // init multi-threading Job.startService(); final Queue<Future<Object>> queue = new LinkedList<Future<Object>>(); // get the input from the bucket List<String> names = Bucket.getBucketItems("datasets", this.inputBucket); for (String dsn : names) { for (Classifier model : models) { String tag = null; if (model instanceof SingleClassifierEnhancer) { tag = model.getClass().getSimpleName() + "-" + ((SingleClassifierEnhancer) model).getClassifier().getClass().getSimpleName(); } else { tag = model.getClass().getSimpleName(); } queue.add(Job.submit(new RegressionModelBuilder(dsn, tag, AbstractClassifier.makeCopy(model), this.outputBucket))); } } // wait on complete Progress progress = new Progress(queue.size(), this.getClass().getSimpleName()); while (!queue.isEmpty()) { try { queue.remove().get(); } catch (Exception e) { Job.log("ERROR", e.toString()); } progress.tick(); } progress.done(); Job.stopService(); } }