weka.classifiers.functions.PLSClassifier.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.functions.PLSClassifier.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * PLSClassifier.java
 * Copyright (C) 2006,2015 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.functions;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.RandomizableClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.filters.Filter;
import weka.filters.supervised.attribute.PLSFilter;

/**
 * <!-- globalinfo-start --> A wrapper classifier for the PLSFilter, utilizing
 * the PLSFilter's ability to perform predictions.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -filter &lt;filter specification&gt;
 *  The PLS filter to use. Full classname of filter to include,  followed by scheme options.
 *  (default: weka.filters.supervised.attribute.PLSFilter)
 * </pre>
 * 
 * <pre>
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * </pre>
 * 
 * <pre>
 * Options specific to filter weka.filters.supervised.attribute.PLSFilter ('-filter'):
 * </pre>
 * 
 * <pre>
 * -D
 *  Turns on output of debugging information.
 * </pre>
 * 
 * <pre>
 * -C &lt;num&gt;
 *  The number of components to compute.
 *  (default: 20)
 * </pre>
 * 
 * <pre>
 * -U
 *  Updates the class attribute as well.
 *  (default: off)
 * </pre>
 * 
 * <pre>
 * -M
 *  Turns replacing of missing values on.
 *  (default: off)
 * </pre>
 * 
 * <pre>
 * -A &lt;SIMPLS|PLS1&gt;
 *  The algorithm to use.
 *  (default: PLS1)
 * </pre>
 * 
 * <pre>
 * -P &lt;none|center|standardize&gt;
 *  The type of preprocessing that is applied to the data.
 *  (default: center)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author fracpete (fracpete at waikato dot ac dot nz)
 * @version $Revision$
 */
public class PLSClassifier extends RandomizableClassifier implements WeightedInstancesHandler {

    /** for serialization */
    private static final long serialVersionUID = 4819775160590973256L;

    /** the PLS filter */
    protected PLSFilter m_Filter = new PLSFilter();

    /** the actual filter to use */
    protected PLSFilter m_ActualFilter = null;

    /**
     * Returns a string describing classifier
     * 
     * @return a description suitable for displaying in the explorer/experimenter
     *         gui
     */
    public String globalInfo() {
        return "A wrapper classifier for the PLSFilter, utilizing the PLSFilter's "
                + "ability to perform predictions.";
    }

    /**
     * Gets an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        Vector<Option> result = new Vector<Option>();

        result.addElement(new Option(
                "\tThe PLS filter to use. Full classname of filter to include, " + "\tfollowed by scheme options.\n"
                        + "\t(default: weka.filters.supervised.attribute.PLSFilter)",
                "filter", 1, "-filter <filter specification>"));

        result.addAll(Collections.list(super.listOptions()));

        if (getFilter() instanceof OptionHandler) {
            result.addElement(new Option("", "", 0,
                    "\nOptions specific to filter " + getFilter().getClass().getName() + " ('-filter'):"));

            result.addAll(Collections.list(((OptionHandler) getFilter()).listOptions()));
        }

        return result.elements();
    }

    /**
     * returns the options of the current setup
     * 
     * @return the current options
     */
    @Override
    public String[] getOptions() {

        Vector<String> result = new Vector<String>();

        result.add("-filter");
        if (getFilter() instanceof OptionHandler) {
            result.add(getFilter().getClass().getName() + " "
                    + Utils.joinOptions(((OptionHandler) getFilter()).getOptions()));
        } else {
            result.add(getFilter().getClass().getName());
        }

        Collections.addAll(result, super.getOptions());

        return result.toArray(new String[result.size()]);
    }

    /**
     * Parses the options for this object.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -filter &lt;filter specification&gt;
     *  The PLS filter to use. Full classname of filter to include,  followed by scheme options.
     *  (default: weka.filters.supervised.attribute.PLSFilter)
     * </pre>
     * 
     * <pre>
     * -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <pre>
     * Options specific to filter weka.filters.supervised.attribute.PLSFilter ('-filter'):
     * </pre>
     * 
     * <pre>
     * -D
     *  Turns on output of debugging information.
     * </pre>
     * 
     * <pre>
     * -C &lt;num&gt;
     *  The number of components to compute.
     *  (default: 20)
     * </pre>
     * 
     * <pre>
     * -U
     *  Updates the class attribute as well.
     *  (default: off)
     * </pre>
     * 
     * <pre>
     * -M
     *  Turns replacing of missing values on.
     *  (default: off)
     * </pre>
     * 
     * <pre>
     * -A &lt;SIMPLS|PLS1&gt;
     *  The algorithm to use.
     *  (default: PLS1)
     * </pre>
     * 
     * <pre>
     * -P &lt;none|center|standardize&gt;
     *  The type of preprocessing that is applied to the data.
     *  (default: center)
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the options to use
     * @throws Exception if setting of options fails
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        String tmpStr = Utils.getOption("filter", options);
        String[] tmpOptions = Utils.splitOptions(tmpStr);
        if (tmpOptions.length != 0) {
            tmpStr = tmpOptions[0];
            tmpOptions[0] = "";
            setFilter((Filter) Utils.forName(Filter.class, tmpStr, tmpOptions));
        }

        super.setOptions(options);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String filterTipText() {
        return "The PLS filter to be used (only used for setup).";
    }

    /**
     * Set the PLS filter (only used for setup).
     * 
     * @param value the kernel filter.
     * @throws Exception if not PLSFilter
     */
    public void setFilter(Filter value) throws Exception {
        if (!(value instanceof PLSFilter)) {
            throw new Exception("Filter has to be PLSFilter!");
        } else {
            m_Filter = (PLSFilter) value;
        }
    }

    /**
     * Get the PLS filter.
     * 
     * @return the PLS filter
     */
    public Filter getFilter() {
        return m_Filter;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = getFilter().getCapabilities();

        // class
        result.enable(Capability.MISSING_CLASS_VALUES);

        // other
        result.setMinimumNumberInstances(1);

        return result;
    }

    /**
     * builds the classifier
     * 
     * @param data the training instances
     * @throws Exception if something goes wrong
     */
    @Override
    public void buildClassifier(Instances data) throws Exception {
        // do we need to resample?
        boolean resample = false;
        for (int i = 0; i < data.numInstances(); i++) {
            if (data.instance(i).weight() != 1.0) {
                resample = true;
                break;
            }
        }
        if (resample) {
            if (getDebug())
                System.err.println(getClass().getName() + ": resampling training data");
            data = data.resampleWithWeights(new Random(m_Seed));
        }

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // remove instances with missing class
        data = new Instances(data);
        data.deleteWithMissingClass();

        // initialize filter
        m_ActualFilter = (PLSFilter) Filter.makeCopy(m_Filter);
        m_ActualFilter.setPerformPrediction(false);
        m_ActualFilter.setInputFormat(data);
        Filter.useFilter(data, m_ActualFilter);
        m_ActualFilter.setPerformPrediction(true);
    }

    /**
     * Classifies the given test instance. The instance has to belong to a dataset
     * when it's being classified.
     * 
     * @param instance the instance to be classified
     * @return the predicted most likely class for the instance or
     *         Utils.missingValue() if no prediction is made
     * @throws Exception if an error occurred during the prediction
     */
    @Override
    public double classifyInstance(Instance instance) throws Exception {
        double result;
        Instance pred;

        m_ActualFilter.input(instance);
        m_ActualFilter.batchFinished();
        pred = m_ActualFilter.output();
        result = pred.classValue();

        return result;
    }

    /**
     * returns a string representation of the classifier
     * 
     * @return a string representation of the classifier
     */
    @Override
    public String toString() {
        String result;

        result = this.getClass().getName() + "\n" + this.getClass().getName().replaceAll(".", "=") + "\n\n";
        result += "# Components..........: " + m_Filter.getNumComponents() + "\n";
        result += "Algorithm.............: " + m_Filter.getAlgorithm().getSelectedTag().getReadable() + "\n";
        result += "Replace missing values: " + (m_Filter.getReplaceMissing() ? "yes" : "no") + "\n";
        result += "Preprocessing.........: " + m_Filter.getPreprocessing().getSelectedTag().getReadable() + "\n";

        return result;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for running this classifier from commandline.
     * 
     * @param args the options
     */
    public static void main(String[] args) {
        runClassifier(new PLSClassifier(), args);
    }
}