Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or GITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Copyright (C) 2012 James Jesensky */ package jjj.asap.sas.models1.job; import java.io.FileNotFoundException; import java.util.Arrays; import java.util.LinkedList; import java.util.List; import java.util.Queue; import java.util.concurrent.Future; import jjj.asap.sas.util.Bucket; import jjj.asap.sas.util.Contest; import jjj.asap.sas.util.Job; import jjj.asap.sas.util.Progress; import jjj.asap.sas.weka.RegressionModelBuilder; import weka.classifiers.AbstractClassifier; import weka.classifiers.Classifier; import weka.classifiers.functions.PLSClassifier; import weka.core.SelectedTag; import weka.filters.supervised.attribute.PLSFilter; /** * Builds a bucket of basic models */ public class BuildPLSModels extends Job { private static final SelectedTag CENTER = new SelectedTag(PLSFilter.PREPROCESSING_CENTER, PLSFilter.TAGS_PREPROCESSING); private static final SelectedTag NONE = new SelectedTag(PLSFilter.PREPROCESSING_NONE, PLSFilter.TAGS_PREPROCESSING); private static final SelectedTag STANDARDIZE = new SelectedTag(PLSFilter.PREPROCESSING_STANDARDIZE, PLSFilter.TAGS_PREPROCESSING); /** * args[0] - input bucket * args[1] - output bucket */ public static void main(String[] args) throws Exception { Job job = new BuildPLSModels(args[0], args[1]); Job.log("ARGS", Arrays.toString(args)); job.start(); } private String inputBucket; private String outputBucket; public BuildPLSModels(String inputBucket, String outputBucket) { super(); this.inputBucket = inputBucket; this.outputBucket = outputBucket; } @Override protected void run() throws Exception { // validate args if (!Bucket.isBucket("datasets", inputBucket)) { throw new FileNotFoundException(inputBucket); } if (!Bucket.isBucket("models", outputBucket)) { throw new FileNotFoundException(outputBucket); } // Standard PLS PLSClassifier pls = new PLSClassifier(); PLSFilter filter = (PLSFilter) pls.getFilter(); filter.setNumComponents(5); filter.setPreprocessing(NONE); // centered PLS PLSClassifier plsc = new PLSClassifier(); PLSFilter center = (PLSFilter) plsc.getFilter(); center.setNumComponents(5); center.setPreprocessing(CENTER); // standardized PLS PLSClassifier plss = new PLSClassifier(); PLSFilter std = (PLSFilter) plss.getFilter(); std.setNumComponents(10); std.setPreprocessing(STANDARDIZE); // init multi-threading Job.startService(); final Queue<Future<Object>> queue = new LinkedList<Future<Object>>(); // get the input from the bucket List<String> names = Bucket.getBucketItems("datasets", this.inputBucket); for (String dsn : names) { int essaySet = Contest.getEssaySet(dsn); Classifier alg = pls; if (essaySet == 10 || dsn.contains("1grams-thru-3grams")) { alg = plsc; } if (essaySet == 7) { alg = plss; } queue.add(Job.submit( new RegressionModelBuilder(dsn, "PLS", AbstractClassifier.makeCopy(alg), this.outputBucket))); } // wait on complete Progress progress = new Progress(queue.size(), this.getClass().getSimpleName()); while (!queue.isEmpty()) { try { queue.remove().get(); } catch (Exception e) { Job.log("ERROR", e.toString()); } progress.tick(); } progress.done(); Job.stopService(); } }