jjj.asap.sas.models1.job.BuildPLSModels.java Source code

Java tutorial

Introduction

Here is the source code for jjj.asap.sas.models1.job.BuildPLSModels.java

Source

/*
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or GITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Copyright (C) 2012 James Jesensky
 */

package jjj.asap.sas.models1.job;

import java.io.FileNotFoundException;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.Future;

import jjj.asap.sas.util.Bucket;
import jjj.asap.sas.util.Contest;
import jjj.asap.sas.util.Job;
import jjj.asap.sas.util.Progress;
import jjj.asap.sas.weka.RegressionModelBuilder;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.functions.PLSClassifier;
import weka.core.SelectedTag;
import weka.filters.supervised.attribute.PLSFilter;

/**
 * Builds a bucket of basic models
 */
public class BuildPLSModels extends Job {

    private static final SelectedTag CENTER = new SelectedTag(PLSFilter.PREPROCESSING_CENTER,
            PLSFilter.TAGS_PREPROCESSING);
    private static final SelectedTag NONE = new SelectedTag(PLSFilter.PREPROCESSING_NONE,
            PLSFilter.TAGS_PREPROCESSING);
    private static final SelectedTag STANDARDIZE = new SelectedTag(PLSFilter.PREPROCESSING_STANDARDIZE,
            PLSFilter.TAGS_PREPROCESSING);

    /**
     * args[0] - input bucket
     * args[1] - output bucket
     */
    public static void main(String[] args) throws Exception {
        Job job = new BuildPLSModels(args[0], args[1]);
        Job.log("ARGS", Arrays.toString(args));
        job.start();
    }

    private String inputBucket;
    private String outputBucket;

    public BuildPLSModels(String inputBucket, String outputBucket) {
        super();
        this.inputBucket = inputBucket;
        this.outputBucket = outputBucket;
    }

    @Override
    protected void run() throws Exception {

        // validate args
        if (!Bucket.isBucket("datasets", inputBucket)) {
            throw new FileNotFoundException(inputBucket);
        }
        if (!Bucket.isBucket("models", outputBucket)) {
            throw new FileNotFoundException(outputBucket);
        }

        // Standard PLS

        PLSClassifier pls = new PLSClassifier();
        PLSFilter filter = (PLSFilter) pls.getFilter();
        filter.setNumComponents(5);
        filter.setPreprocessing(NONE);

        // centered PLS

        PLSClassifier plsc = new PLSClassifier();
        PLSFilter center = (PLSFilter) plsc.getFilter();
        center.setNumComponents(5);
        center.setPreprocessing(CENTER);

        // standardized PLS

        PLSClassifier plss = new PLSClassifier();
        PLSFilter std = (PLSFilter) plss.getFilter();
        std.setNumComponents(10);
        std.setPreprocessing(STANDARDIZE);

        // init multi-threading
        Job.startService();
        final Queue<Future<Object>> queue = new LinkedList<Future<Object>>();

        // get the input from the bucket
        List<String> names = Bucket.getBucketItems("datasets", this.inputBucket);
        for (String dsn : names) {

            int essaySet = Contest.getEssaySet(dsn);

            Classifier alg = pls;

            if (essaySet == 10 || dsn.contains("1grams-thru-3grams")) {
                alg = plsc;
            }

            if (essaySet == 7) {
                alg = plss;
            }

            queue.add(Job.submit(
                    new RegressionModelBuilder(dsn, "PLS", AbstractClassifier.makeCopy(alg), this.outputBucket)));
        }

        // wait on complete
        Progress progress = new Progress(queue.size(), this.getClass().getSimpleName());
        while (!queue.isEmpty()) {
            try {
                queue.remove().get();
            } catch (Exception e) {
                Job.log("ERROR", e.toString());
            }
            progress.tick();
        }
        progress.done();
        Job.stopService();

    }

}