java.awt.font.TextLine.java Source code

Java tutorial

Introduction

Here is the source code for java.awt.font.TextLine.java

Source

/*
 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * (C) Copyright IBM Corp. 1998-2003, All Rights Reserved
 *
 */

package java.awt.font;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;
import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.GeneralPath;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.im.InputMethodHighlight;
import java.awt.image.BufferedImage;
import java.text.Annotation;
import java.text.AttributedCharacterIterator;
import java.text.AttributedCharacterIterator.Attribute;
import java.text.Bidi;
import java.text.CharacterIterator;
import java.util.Hashtable;
import java.util.Map;
import sun.font.AttributeValues;
import sun.font.BidiUtils;
import sun.font.CodePointIterator;
import sun.font.CoreMetrics;
import sun.font.Decoration;
import sun.font.FontLineMetrics;
import sun.font.FontResolver;
import sun.font.GraphicComponent;
import sun.font.LayoutPathImpl;
import sun.font.LayoutPathImpl.EmptyPath;
import sun.font.LayoutPathImpl.SegmentPathBuilder;
import sun.font.TextLabelFactory;
import sun.font.TextLineComponent;

import java.awt.geom.Line2D;

final class TextLine {

    static final class TextLineMetrics {
        public final float ascent;
        public final float descent;
        public final float leading;
        public final float advance;

        public TextLineMetrics(float ascent, float descent, float leading, float advance) {
            this.ascent = ascent;
            this.descent = descent;
            this.leading = leading;
            this.advance = advance;
        }
    }

    private TextLineComponent[] fComponents;
    private float[] fBaselineOffsets;
    private int[] fComponentVisualOrder; // if null, ltr
    private float[] locs; // x,y pairs for components in visual order
    private char[] fChars;
    private int fCharsStart;
    private int fCharsLimit;
    private int[] fCharVisualOrder; // if null, ltr
    private int[] fCharLogicalOrder; // if null, ltr
    private byte[] fCharLevels; // if null, 0
    private boolean fIsDirectionLTR;
    private LayoutPathImpl lp;
    private boolean isSimple;
    private Rectangle pixelBounds;
    private FontRenderContext frc;

    private TextLineMetrics fMetrics = null; // built on demand in getMetrics

    public TextLine(FontRenderContext frc, TextLineComponent[] components, float[] baselineOffsets, char[] chars,
            int charsStart, int charsLimit, int[] charLogicalOrder, byte[] charLevels, boolean isDirectionLTR) {

        int[] componentVisualOrder = computeComponentOrder(components, charLogicalOrder);

        this.frc = frc;
        fComponents = components;
        fBaselineOffsets = baselineOffsets;
        fComponentVisualOrder = componentVisualOrder;
        fChars = chars;
        fCharsStart = charsStart;
        fCharsLimit = charsLimit;
        fCharLogicalOrder = charLogicalOrder;
        fCharLevels = charLevels;
        fIsDirectionLTR = isDirectionLTR;
        checkCtorArgs();

        init();
    }

    private void checkCtorArgs() {

        int checkCharCount = 0;
        for (int i = 0; i < fComponents.length; i++) {
            checkCharCount += fComponents[i].getNumCharacters();
        }

        if (checkCharCount != this.characterCount()) {
            throw new IllegalArgumentException(
                    "Invalid TextLine!  " + "char count is different from " + "sum of char counts of components.");
        }
    }

    private void init() {

        // first, we need to check for graphic components on the TOP or BOTTOM baselines.  So
        // we perform the work that used to be in getMetrics here.

        float ascent = 0;
        float descent = 0;
        float leading = 0;
        float advance = 0;

        // ascent + descent must not be less than this value
        float maxGraphicHeight = 0;
        float maxGraphicHeightWithLeading = 0;

        // walk through EGA's
        TextLineComponent tlc;
        boolean fitTopAndBottomGraphics = false;

        isSimple = true;

        for (int i = 0; i < fComponents.length; i++) {
            tlc = fComponents[i];

            isSimple &= tlc.isSimple();

            CoreMetrics cm = tlc.getCoreMetrics();

            byte baseline = (byte) cm.baselineIndex;

            if (baseline >= 0) {
                float baselineOffset = fBaselineOffsets[baseline];

                ascent = Math.max(ascent, -baselineOffset + cm.ascent);

                float gd = baselineOffset + cm.descent;
                descent = Math.max(descent, gd);

                leading = Math.max(leading, gd + cm.leading);
            } else {
                fitTopAndBottomGraphics = true;
                float graphicHeight = cm.ascent + cm.descent;
                float graphicHeightWithLeading = graphicHeight + cm.leading;
                maxGraphicHeight = Math.max(maxGraphicHeight, graphicHeight);
                maxGraphicHeightWithLeading = Math.max(maxGraphicHeightWithLeading, graphicHeightWithLeading);
            }
        }

        if (fitTopAndBottomGraphics) {
            if (maxGraphicHeight > ascent + descent) {
                descent = maxGraphicHeight - ascent;
            }
            if (maxGraphicHeightWithLeading > ascent + leading) {
                leading = maxGraphicHeightWithLeading - ascent;
            }
        }

        leading -= descent;

        // we now know enough to compute the locs, but we need the final loc
        // for the advance before we can create the metrics object

        if (fitTopAndBottomGraphics) {
            // we have top or bottom baselines, so expand the baselines array
            // full offsets are needed by CoreMetrics.effectiveBaselineOffset
            fBaselineOffsets = new float[] { fBaselineOffsets[0], fBaselineOffsets[1], fBaselineOffsets[2], descent,
                    -ascent };
        }

        float x = 0;
        float y = 0;
        CoreMetrics pcm = null;

        boolean needPath = false;
        locs = new float[fComponents.length * 2 + 2];

        for (int i = 0, n = 0; i < fComponents.length; ++i, n += 2) {
            tlc = fComponents[getComponentLogicalIndex(i)];
            CoreMetrics cm = tlc.getCoreMetrics();

            if ((pcm != null) && (pcm.italicAngle != 0 || cm.italicAngle != 0) && // adjust because of italics
                    (pcm.italicAngle != cm.italicAngle || pcm.baselineIndex != cm.baselineIndex
                            || pcm.ssOffset != cm.ssOffset)) {

                // 1) compute the area of overlap - min effective ascent and min effective descent
                // 2) compute the x positions along italic angle of ascent and descent for left and right
                // 3) compute maximum left - right, adjust right position by this value
                // this is a crude form of kerning between textcomponents

                // note glyphvectors preposition glyphs based on offset,
                // so tl doesn't need to adjust glyphvector position
                // 1)
                float pb = pcm.effectiveBaselineOffset(fBaselineOffsets);
                float pa = pb - pcm.ascent;
                float pd = pb + pcm.descent;
                // pb += pcm.ssOffset;

                float cb = cm.effectiveBaselineOffset(fBaselineOffsets);
                float ca = cb - cm.ascent;
                float cd = cb + cm.descent;
                // cb += cm.ssOffset;

                float a = Math.max(pa, ca);
                float d = Math.min(pd, cd);

                // 2)
                float pax = pcm.italicAngle * (pb - a);
                float pdx = pcm.italicAngle * (pb - d);

                float cax = cm.italicAngle * (cb - a);
                float cdx = cm.italicAngle * (cb - d);

                // 3)
                float dax = pax - cax;
                float ddx = pdx - cdx;
                float dx = Math.max(dax, ddx);

                x += dx;
                y = cb;
            } else {
                // no italic adjustment for x, but still need to compute y
                y = cm.effectiveBaselineOffset(fBaselineOffsets); // + cm.ssOffset;
            }

            locs[n] = x;
            locs[n + 1] = y;

            x += tlc.getAdvance();
            pcm = cm;

            needPath |= tlc.getBaselineTransform() != null;
        }

        // do we want italic padding at the right of the line?
        if (pcm.italicAngle != 0) {
            float pb = pcm.effectiveBaselineOffset(fBaselineOffsets);
            float pa = pb - pcm.ascent;
            float pd = pb + pcm.descent;
            pb += pcm.ssOffset;

            float d;
            if (pcm.italicAngle > 0) {
                d = pb + pcm.ascent;
            } else {
                d = pb - pcm.descent;
            }
            d *= pcm.italicAngle;

            x += d;
        }
        locs[locs.length - 2] = x;
        // locs[locs.length - 1] = 0; // final offset is always back on baseline

        // ok, build fMetrics since we have the final advance
        advance = x;
        fMetrics = new TextLineMetrics(ascent, descent, leading, advance);

        // build path if we need it
        if (needPath) {
            isSimple = false;

            Point2D.Double pt = new Point2D.Double();
            double tx = 0, ty = 0;
            SegmentPathBuilder builder = new SegmentPathBuilder();
            builder.moveTo(locs[0], 0);
            for (int i = 0, n = 0; i < fComponents.length; ++i, n += 2) {
                tlc = fComponents[getComponentLogicalIndex(i)];
                AffineTransform at = tlc.getBaselineTransform();
                if (at != null && ((at.getType() & AffineTransform.TYPE_TRANSLATION) != 0)) {
                    double dx = at.getTranslateX();
                    double dy = at.getTranslateY();
                    builder.moveTo(tx += dx, ty += dy);
                }
                pt.x = locs[n + 2] - locs[n];
                pt.y = 0;
                if (at != null) {
                    at.deltaTransform(pt, pt);
                }
                builder.lineTo(tx += pt.x, ty += pt.y);
            }
            lp = builder.complete();

            if (lp == null) { // empty path
                tlc = fComponents[getComponentLogicalIndex(0)];
                AffineTransform at = tlc.getBaselineTransform();
                if (at != null) {
                    lp = new EmptyPath(at);
                }
            }
        }
    }

    public Rectangle getPixelBounds(FontRenderContext frc, float x, float y) {
        Rectangle result = null;

        // if we have a matching frc, set it to null so we don't have to test it
        // for each component
        if (frc != null && frc.equals(this.frc)) {
            frc = null;
        }

        // only cache integral locations with the default frc, this is a bit strict
        int ix = (int) Math.floor(x);
        int iy = (int) Math.floor(y);
        float rx = x - ix;
        float ry = y - iy;
        boolean canCache = frc == null && rx == 0 && ry == 0;

        if (canCache && pixelBounds != null) {
            result = new Rectangle(pixelBounds);
            result.x += ix;
            result.y += iy;
            return result;
        }

        // couldn't use cache, or didn't have it, so compute

        if (isSimple) { // all glyphvectors with no decorations, no layout path
            for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
                TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
                Rectangle pb = tlc.getPixelBounds(frc, locs[n] + rx, locs[n + 1] + ry);
                if (!pb.isEmpty()) {
                    if (result == null) {
                        result = pb;
                    } else {
                        result.add(pb);
                    }
                }
            }
            if (result == null) {
                result = new Rectangle(0, 0, 0, 0);
            }
        } else { // draw and test
            final int MARGIN = 3;
            Rectangle2D r2d = getVisualBounds();
            if (lp != null) {
                r2d = lp.mapShape(r2d).getBounds();
            }
            Rectangle bounds = r2d.getBounds();
            BufferedImage im = new BufferedImage(bounds.width + MARGIN * 2, bounds.height + MARGIN * 2,
                    BufferedImage.TYPE_INT_ARGB);

            Graphics2D g2d = im.createGraphics();
            g2d.setColor(Color.WHITE);
            g2d.fillRect(0, 0, im.getWidth(), im.getHeight());

            g2d.setColor(Color.BLACK);
            draw(g2d, rx + MARGIN - bounds.x, ry + MARGIN - bounds.y);

            result = computePixelBounds(im);
            result.x -= MARGIN - bounds.x;
            result.y -= MARGIN - bounds.y;
        }

        if (canCache) {
            pixelBounds = new Rectangle(result);
        }

        result.x += ix;
        result.y += iy;
        return result;
    }

    static Rectangle computePixelBounds(BufferedImage im) {
        int w = im.getWidth();
        int h = im.getHeight();

        int l = -1, t = -1, r = w, b = h;

        {
            // get top
            int[] buf = new int[w];
            loop: while (++t < h) {
                im.getRGB(0, t, buf.length, 1, buf, 0, w); // w ignored
                for (int i = 0; i < buf.length; i++) {
                    if (buf[i] != -1) {
                        break loop;
                    }
                }
            }
        }

        // get bottom
        {
            int[] buf = new int[w];
            loop: while (--b > t) {
                im.getRGB(0, b, buf.length, 1, buf, 0, w); // w ignored
                for (int i = 0; i < buf.length; ++i) {
                    if (buf[i] != -1) {
                        break loop;
                    }
                }
            }
            ++b;
        }

        // get left
        {
            loop: while (++l < r) {
                for (int i = t; i < b; ++i) {
                    int v = im.getRGB(l, i);
                    if (v != -1) {
                        break loop;
                    }
                }
            }
        }

        // get right
        {
            loop: while (--r > l) {
                for (int i = t; i < b; ++i) {
                    int v = im.getRGB(r, i);
                    if (v != -1) {
                        break loop;
                    }
                }
            }
            ++r;
        }

        return new Rectangle(l, t, r - l, b - t);
    }

    private abstract static class Function {

        abstract float computeFunction(TextLine line, int componentIndex, int indexInArray);
    }

    private static Function fgPosAdvF = new Function() {
        float computeFunction(TextLine line, int componentIndex, int indexInArray) {

            TextLineComponent tlc = line.fComponents[componentIndex];
            int vi = line.getComponentVisualIndex(componentIndex);
            return line.locs[vi * 2] + tlc.getCharX(indexInArray) + tlc.getCharAdvance(indexInArray);
        }
    };

    private static Function fgAdvanceF = new Function() {

        float computeFunction(TextLine line, int componentIndex, int indexInArray) {

            TextLineComponent tlc = line.fComponents[componentIndex];
            return tlc.getCharAdvance(indexInArray);
        }
    };

    private static Function fgXPositionF = new Function() {

        float computeFunction(TextLine line, int componentIndex, int indexInArray) {

            int vi = line.getComponentVisualIndex(componentIndex);
            TextLineComponent tlc = line.fComponents[componentIndex];
            return line.locs[vi * 2] + tlc.getCharX(indexInArray);
        }
    };

    private static Function fgYPositionF = new Function() {

        float computeFunction(TextLine line, int componentIndex, int indexInArray) {

            TextLineComponent tlc = line.fComponents[componentIndex];
            float charPos = tlc.getCharY(indexInArray);

            // charPos is relative to the component - adjust for
            // baseline

            return charPos + line.getComponentShift(componentIndex);
        }
    };

    public int characterCount() {

        return fCharsLimit - fCharsStart;
    }

    public boolean isDirectionLTR() {

        return fIsDirectionLTR;
    }

    public TextLineMetrics getMetrics() {
        return fMetrics;
    }

    public int visualToLogical(int visualIndex) {

        if (fCharLogicalOrder == null) {
            return visualIndex;
        }

        if (fCharVisualOrder == null) {
            fCharVisualOrder = BidiUtils.createInverseMap(fCharLogicalOrder);
        }

        return fCharVisualOrder[visualIndex];
    }

    public int logicalToVisual(int logicalIndex) {

        return (fCharLogicalOrder == null) ? logicalIndex : fCharLogicalOrder[logicalIndex];
    }

    public byte getCharLevel(int logicalIndex) {

        return fCharLevels == null ? 0 : fCharLevels[logicalIndex];
    }

    public boolean isCharLTR(int logicalIndex) {

        return (getCharLevel(logicalIndex) & 0x1) == 0;
    }

    public int getCharType(int logicalIndex) {

        return Character.getType(fChars[logicalIndex + fCharsStart]);
    }

    public boolean isCharSpace(int logicalIndex) {

        return Character.isSpaceChar(fChars[logicalIndex + fCharsStart]);
    }

    public boolean isCharWhitespace(int logicalIndex) {

        return Character.isWhitespace(fChars[logicalIndex + fCharsStart]);
    }

    public float getCharAngle(int logicalIndex) {

        return getCoreMetricsAt(logicalIndex).italicAngle;
    }

    public CoreMetrics getCoreMetricsAt(int logicalIndex) {

        if (logicalIndex < 0) {
            throw new IllegalArgumentException("Negative logicalIndex.");
        }

        if (logicalIndex > fCharsLimit - fCharsStart) {
            throw new IllegalArgumentException("logicalIndex too large.");
        }

        int currentTlc = 0;
        int tlcStart = 0;
        int tlcLimit = 0;

        do {
            tlcLimit += fComponents[currentTlc].getNumCharacters();
            if (tlcLimit > logicalIndex) {
                break;
            }
            ++currentTlc;
            tlcStart = tlcLimit;
        } while (currentTlc < fComponents.length);

        return fComponents[currentTlc].getCoreMetrics();
    }

    public float getCharAscent(int logicalIndex) {

        return getCoreMetricsAt(logicalIndex).ascent;
    }

    public float getCharDescent(int logicalIndex) {

        return getCoreMetricsAt(logicalIndex).descent;
    }

    public float getCharShift(int logicalIndex) {

        return getCoreMetricsAt(logicalIndex).ssOffset;
    }

    private float applyFunctionAtIndex(int logicalIndex, Function f) {

        if (logicalIndex < 0) {
            throw new IllegalArgumentException("Negative logicalIndex.");
        }

        int tlcStart = 0;

        for (int i = 0; i < fComponents.length; i++) {

            int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
            if (tlcLimit > logicalIndex) {
                return f.computeFunction(this, i, logicalIndex - tlcStart);
            } else {
                tlcStart = tlcLimit;
            }
        }

        throw new IllegalArgumentException("logicalIndex too large.");
    }

    public float getCharAdvance(int logicalIndex) {

        return applyFunctionAtIndex(logicalIndex, fgAdvanceF);
    }

    public float getCharXPosition(int logicalIndex) {

        return applyFunctionAtIndex(logicalIndex, fgXPositionF);
    }

    public float getCharYPosition(int logicalIndex) {

        return applyFunctionAtIndex(logicalIndex, fgYPositionF);
    }

    public float getCharLinePosition(int logicalIndex) {

        return getCharXPosition(logicalIndex);
    }

    public float getCharLinePosition(int logicalIndex, boolean leading) {
        Function f = isCharLTR(logicalIndex) == leading ? fgXPositionF : fgPosAdvF;
        return applyFunctionAtIndex(logicalIndex, f);
    }

    public boolean caretAtOffsetIsValid(int offset) {

        if (offset < 0) {
            throw new IllegalArgumentException("Negative offset.");
        }

        int tlcStart = 0;

        for (int i = 0; i < fComponents.length; i++) {

            int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
            if (tlcLimit > offset) {
                return fComponents[i].caretAtOffsetIsValid(offset - tlcStart);
            } else {
                tlcStart = tlcLimit;
            }
        }

        throw new IllegalArgumentException("logicalIndex too large.");
    }

    /**
     * map a component visual index to the logical index.
     */
    private int getComponentLogicalIndex(int vi) {
        if (fComponentVisualOrder == null) {
            return vi;
        }
        return fComponentVisualOrder[vi];
    }

    /**
     * map a component logical index to the visual index.
     */
    private int getComponentVisualIndex(int li) {
        if (fComponentVisualOrder == null) {
            return li;
        }
        for (int i = 0; i < fComponentVisualOrder.length; ++i) {
            if (fComponentVisualOrder[i] == li) {
                return i;
            }
        }
        throw new IndexOutOfBoundsException("bad component index: " + li);
    }

    public Rectangle2D getCharBounds(int logicalIndex) {

        if (logicalIndex < 0) {
            throw new IllegalArgumentException("Negative logicalIndex.");
        }

        int tlcStart = 0;

        for (int i = 0; i < fComponents.length; i++) {

            int tlcLimit = tlcStart + fComponents[i].getNumCharacters();
            if (tlcLimit > logicalIndex) {

                TextLineComponent tlc = fComponents[i];
                int indexInTlc = logicalIndex - tlcStart;
                Rectangle2D chBounds = tlc.getCharVisualBounds(indexInTlc);

                int vi = getComponentVisualIndex(i);
                chBounds.setRect(chBounds.getX() + locs[vi * 2], chBounds.getY() + locs[vi * 2 + 1],
                        chBounds.getWidth(), chBounds.getHeight());
                return chBounds;
            } else {
                tlcStart = tlcLimit;
            }
        }

        throw new IllegalArgumentException("logicalIndex too large.");
    }

    private float getComponentShift(int index) {
        CoreMetrics cm = fComponents[index].getCoreMetrics();
        return cm.effectiveBaselineOffset(fBaselineOffsets);
    }

    public void draw(Graphics2D g2, float x, float y) {
        if (lp == null) {
            for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
                TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
                tlc.draw(g2, locs[n] + x, locs[n + 1] + y);
            }
        } else {
            AffineTransform oldTx = g2.getTransform();
            Point2D.Float pt = new Point2D.Float();
            for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
                TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
                lp.pathToPoint(locs[n], locs[n + 1], false, pt);
                pt.x += x;
                pt.y += y;
                AffineTransform at = tlc.getBaselineTransform();

                if (at != null) {
                    g2.translate(pt.x - at.getTranslateX(), pt.y - at.getTranslateY());
                    g2.transform(at);
                    tlc.draw(g2, 0, 0);
                    g2.setTransform(oldTx);
                } else {
                    tlc.draw(g2, pt.x, pt.y);
                }
            }
        }
    }

    /**
     * Return the union of the visual bounds of all the components.
     * This incorporates the path.  It does not include logical
     * bounds (used by carets).
     */
    public Rectangle2D getVisualBounds() {
        Rectangle2D result = null;

        for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
            TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];
            Rectangle2D r = tlc.getVisualBounds();

            Point2D.Float pt = new Point2D.Float(locs[n], locs[n + 1]);
            if (lp == null) {
                r.setRect(r.getMinX() + pt.x, r.getMinY() + pt.y, r.getWidth(), r.getHeight());
            } else {
                lp.pathToPoint(pt, false, pt);

                AffineTransform at = tlc.getBaselineTransform();
                if (at != null) {
                    AffineTransform tx = AffineTransform.getTranslateInstance(pt.x - at.getTranslateX(),
                            pt.y - at.getTranslateY());
                    tx.concatenate(at);
                    r = tx.createTransformedShape(r).getBounds2D();
                } else {
                    r.setRect(r.getMinX() + pt.x, r.getMinY() + pt.y, r.getWidth(), r.getHeight());
                }
            }

            if (result == null) {
                result = r;
            } else {
                result.add(r);
            }
        }

        if (result == null) {
            result = new Rectangle2D.Float(Float.MAX_VALUE, Float.MAX_VALUE, Float.MIN_VALUE, Float.MIN_VALUE);
        }

        return result;
    }

    public Rectangle2D getItalicBounds() {

        float left = Float.MAX_VALUE, right = -Float.MAX_VALUE;
        float top = Float.MAX_VALUE, bottom = -Float.MAX_VALUE;

        for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
            TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];

            Rectangle2D tlcBounds = tlc.getItalicBounds();
            float x = locs[n];
            float y = locs[n + 1];

            left = Math.min(left, x + (float) tlcBounds.getX());
            right = Math.max(right, x + (float) tlcBounds.getMaxX());

            top = Math.min(top, y + (float) tlcBounds.getY());
            bottom = Math.max(bottom, y + (float) tlcBounds.getMaxY());
        }

        return new Rectangle2D.Float(left, top, right - left, bottom - top);
    }

    public Shape getOutline(AffineTransform tx) {

        GeneralPath dstShape = new GeneralPath(GeneralPath.WIND_NON_ZERO);

        for (int i = 0, n = 0; i < fComponents.length; i++, n += 2) {
            TextLineComponent tlc = fComponents[getComponentLogicalIndex(i)];

            dstShape.append(tlc.getOutline(locs[n], locs[n + 1]), false);
        }

        if (tx != null) {
            dstShape.transform(tx);
        }
        return dstShape;
    }

    public String toString() {
        StringBuilder buf = new StringBuilder();

        for (int i = 0; i < fComponents.length; i++) {
            buf.append(fComponents[i]);
        }

        return buf.toString();
    }

    /**
     * Create a TextLine from the text.  The Font must be able to
     * display all of the text.
     * attributes==null is equivalent to using an empty Map for
     * attributes
     */
    public static TextLine fastCreateTextLine(FontRenderContext frc, char[] chars, Font font, CoreMetrics lm,
            Map<? extends Attribute, ?> attributes) {

        boolean isDirectionLTR = true;
        byte[] levels = null;
        int[] charsLtoV = null;
        Bidi bidi = null;
        int characterCount = chars.length;

        boolean requiresBidi = false;
        byte[] embs = null;

        AttributeValues values = null;
        if (attributes != null) {
            values = AttributeValues.fromMap(attributes);
            if (values.getRunDirection() >= 0) {
                isDirectionLTR = values.getRunDirection() == 0;
                requiresBidi = !isDirectionLTR;
            }
            if (values.getBidiEmbedding() != 0) {
                requiresBidi = true;
                byte level = (byte) values.getBidiEmbedding();
                embs = new byte[characterCount];
                for (int i = 0; i < embs.length; ++i) {
                    embs[i] = level;
                }
            }
        }

        // dlf: get baseRot from font for now???

        if (!requiresBidi) {
            requiresBidi = Bidi.requiresBidi(chars, 0, chars.length);
        }

        if (requiresBidi) {
            int bidiflags = values == null ? Bidi.DIRECTION_DEFAULT_LEFT_TO_RIGHT : values.getRunDirection();

            bidi = new Bidi(chars, 0, embs, 0, chars.length, bidiflags);
            if (!bidi.isLeftToRight()) {
                levels = BidiUtils.getLevels(bidi);
                int[] charsVtoL = BidiUtils.createVisualToLogicalMap(levels);
                charsLtoV = BidiUtils.createInverseMap(charsVtoL);
                isDirectionLTR = bidi.baseIsLeftToRight();
            }
        }

        Decoration decorator = Decoration.getDecoration(values);

        int layoutFlags = 0; // no extra info yet, bidi determines run and line direction
        TextLabelFactory factory = new TextLabelFactory(frc, chars, bidi, layoutFlags);

        TextLineComponent[] components = new TextLineComponent[1];

        components = createComponentsOnRun(0, chars.length, chars, charsLtoV, levels, factory, font, lm, frc,
                decorator, components, 0);

        int numComponents = components.length;
        while (components[numComponents - 1] == null) {
            numComponents -= 1;
        }

        if (numComponents != components.length) {
            TextLineComponent[] temp = new TextLineComponent[numComponents];
            System.arraycopy(components, 0, temp, 0, numComponents);
            components = temp;
        }

        return new TextLine(frc, components, lm.baselineOffsets, chars, 0, chars.length, charsLtoV, levels,
                isDirectionLTR);
    }

    private static TextLineComponent[] expandArray(TextLineComponent[] orig) {

        TextLineComponent[] newComponents = new TextLineComponent[orig.length + 8];
        System.arraycopy(orig, 0, newComponents, 0, orig.length);

        return newComponents;
    }

    /**
     * Returns an array in logical order of the TextLineComponents on
     * the text in the given range, with the given attributes.
     */
    public static TextLineComponent[] createComponentsOnRun(int runStart, int runLimit, char[] chars,
            int[] charsLtoV, byte[] levels, TextLabelFactory factory, Font font, CoreMetrics cm,
            FontRenderContext frc, Decoration decorator, TextLineComponent[] components, int numComponents) {

        int pos = runStart;
        do {
            int chunkLimit = firstVisualChunk(charsLtoV, levels, pos, runLimit); // <= displayLimit

            do {
                int startPos = pos;
                int lmCount;

                if (cm == null) {
                    LineMetrics lineMetrics = font.getLineMetrics(chars, startPos, chunkLimit, frc);
                    cm = CoreMetrics.get(lineMetrics);
                    lmCount = lineMetrics.getNumChars();
                } else {
                    lmCount = (chunkLimit - startPos);
                }

                TextLineComponent nextComponent = factory.createExtended(font, cm, decorator, startPos,
                        startPos + lmCount);

                ++numComponents;
                if (numComponents >= components.length) {
                    components = expandArray(components);
                }

                components[numComponents - 1] = nextComponent;

                pos += lmCount;
            } while (pos < chunkLimit);

        } while (pos < runLimit);

        return components;
    }

    /**
     * Returns an array (in logical order) of the TextLineComponents representing
     * the text.  The components are both logically and visually contiguous.
     */
    public static TextLineComponent[] getComponents(StyledParagraph styledParagraph, char[] chars, int textStart,
            int textLimit, int[] charsLtoV, byte[] levels, TextLabelFactory factory) {

        FontRenderContext frc = factory.getFontRenderContext();

        int numComponents = 0;
        TextLineComponent[] tempComponents = new TextLineComponent[1];

        int pos = textStart;
        do {
            int runLimit = Math.min(styledParagraph.getRunLimit(pos), textLimit);

            Decoration decorator = styledParagraph.getDecorationAt(pos);

            Object graphicOrFont = styledParagraph.getFontOrGraphicAt(pos);

            if (graphicOrFont instanceof GraphicAttribute) {
                // AffineTransform baseRot = styledParagraph.getBaselineRotationAt(pos);
                // !!! For now, let's assign runs of text with both fonts and graphic attributes
                // a null rotation (e.g. the baseline rotation goes away when a graphic
                // is applied.
                AffineTransform baseRot = null;
                GraphicAttribute graphicAttribute = (GraphicAttribute) graphicOrFont;
                do {
                    int chunkLimit = firstVisualChunk(charsLtoV, levels, pos, runLimit);

                    GraphicComponent nextGraphic = new GraphicComponent(graphicAttribute, decorator, charsLtoV,
                            levels, pos, chunkLimit, baseRot);
                    pos = chunkLimit;

                    ++numComponents;
                    if (numComponents >= tempComponents.length) {
                        tempComponents = expandArray(tempComponents);
                    }

                    tempComponents[numComponents - 1] = nextGraphic;

                } while (pos < runLimit);
            } else {
                Font font = (Font) graphicOrFont;

                tempComponents = createComponentsOnRun(pos, runLimit, chars, charsLtoV, levels, factory, font, null,
                        frc, decorator, tempComponents, numComponents);
                pos = runLimit;
                numComponents = tempComponents.length;
                while (tempComponents[numComponents - 1] == null) {
                    numComponents -= 1;
                }
            }

        } while (pos < textLimit);

        TextLineComponent[] components;
        if (tempComponents.length == numComponents) {
            components = tempComponents;
        } else {
            components = new TextLineComponent[numComponents];
            System.arraycopy(tempComponents, 0, components, 0, numComponents);
        }

        return components;
    }

    /**
     * Create a TextLine from the Font and character data over the
     * range.  The range is relative to both the StyledParagraph and the
     * character array.
     */
    public static TextLine createLineFromText(char[] chars, StyledParagraph styledParagraph,
            TextLabelFactory factory, boolean isDirectionLTR, float[] baselineOffsets) {

        factory.setLineContext(0, chars.length);

        Bidi lineBidi = factory.getLineBidi();
        int[] charsLtoV = null;
        byte[] levels = null;

        if (lineBidi != null) {
            levels = BidiUtils.getLevels(lineBidi);
            int[] charsVtoL = BidiUtils.createVisualToLogicalMap(levels);
            charsLtoV = BidiUtils.createInverseMap(charsVtoL);
        }

        TextLineComponent[] components = getComponents(styledParagraph, chars, 0, chars.length, charsLtoV, levels,
                factory);

        return new TextLine(factory.getFontRenderContext(), components, baselineOffsets, chars, 0, chars.length,
                charsLtoV, levels, isDirectionLTR);
    }

    /**
     * Compute the components order from the given components array and
     * logical-to-visual character mapping.  May return null if canonical.
     */
    private static int[] computeComponentOrder(TextLineComponent[] components, int[] charsLtoV) {

        /*
         * Create a visual ordering for the glyph sets.  The important thing
         * here is that the values have the proper rank with respect to
         * each other, not the exact values.  For example, the first glyph
         * set that appears visually should have the lowest value.  The last
         * should have the highest value.  The values are then normalized
         * to map 1-1 with positions in glyphs.
         *
         */
        int[] componentOrder = null;
        if (charsLtoV != null && components.length > 1) {
            componentOrder = new int[components.length];
            int gStart = 0;
            for (int i = 0; i < components.length; i++) {
                componentOrder[i] = charsLtoV[gStart];
                gStart += components[i].getNumCharacters();
            }

            componentOrder = BidiUtils.createContiguousOrder(componentOrder);
            componentOrder = BidiUtils.createInverseMap(componentOrder);
        }
        return componentOrder;
    }

    /**
     * Create a TextLine from the text.  chars is just the text in the iterator.
     */
    public static TextLine standardCreateTextLine(FontRenderContext frc, AttributedCharacterIterator text,
            char[] chars, float[] baselineOffsets) {

        StyledParagraph styledParagraph = new StyledParagraph(text, chars);
        Bidi bidi = new Bidi(text);
        if (bidi.isLeftToRight()) {
            bidi = null;
        }
        int layoutFlags = 0; // no extra info yet, bidi determines run and line direction
        TextLabelFactory factory = new TextLabelFactory(frc, chars, bidi, layoutFlags);

        boolean isDirectionLTR = true;
        if (bidi != null) {
            isDirectionLTR = bidi.baseIsLeftToRight();
        }
        return createLineFromText(chars, styledParagraph, factory, isDirectionLTR, baselineOffsets);
    }

    /*
     * A utility to get a range of text that is both logically and visually
     * contiguous.
     * If the entire range is ok, return limit, otherwise return the first
     * directional change after start.  We could do better than this, but
     * it doesn't seem worth it at the moment.
    private static int firstVisualChunk(int order[], byte direction[],
                                    int start, int limit)
    {
    if (order != null) {
        int min = order[start];
        int max = order[start];
        int count = limit - start;
        for (int i = start + 1; i < limit; i++) {
            min = Math.min(min, order[i]);
            max = Math.max(max, order[i]);
            if (max - min >= count) {
                if (direction != null) {
                    byte baseLevel = direction[start];
                    for (int j = start + 1; j < i; j++) {
                        if (direction[j] != baseLevel) {
                            return j;
                        }
                    }
                }
                return i;
            }
        }
    }
    return limit;
    }
     */

    /**
     * When this returns, the ACI's current position will be at the start of the
     * first run which does NOT contain a GraphicAttribute.  If no such run exists
     * the ACI's position will be at the end, and this method will return false.
     */
    static boolean advanceToFirstFont(AttributedCharacterIterator aci) {

        for (char ch = aci.first(); ch != CharacterIterator.DONE; ch = aci.setIndex(aci.getRunLimit())) {

            if (aci.getAttribute(TextAttribute.CHAR_REPLACEMENT) == null) {
                return true;
            }
        }

        return false;
    }

    static float[] getNormalizedOffsets(float[] baselineOffsets, byte baseline) {

        if (baselineOffsets[baseline] != 0) {
            float base = baselineOffsets[baseline];
            float[] temp = new float[baselineOffsets.length];
            for (int i = 0; i < temp.length; i++)
                temp[i] = baselineOffsets[i] - base;
            baselineOffsets = temp;
        }
        return baselineOffsets;
    }

    static Font getFontAtCurrentPos(AttributedCharacterIterator aci) {

        Object value = aci.getAttribute(TextAttribute.FONT);
        if (value != null) {
            return (Font) value;
        }
        if (aci.getAttribute(TextAttribute.FAMILY) != null) {
            return Font.getFont(aci.getAttributes());
        }

        int ch = CodePointIterator.create(aci).next();
        if (ch != CodePointIterator.DONE) {
            FontResolver resolver = FontResolver.getInstance();
            return resolver.getFont(resolver.getFontIndex(ch), aci.getAttributes());
        }
        return null;
    }

    /*
     * The new version requires that chunks be at the same level.
     */
    private static int firstVisualChunk(int[] order, byte[] direction, int start, int limit) {
        if (order != null && direction != null) {
            byte dir = direction[start];
            while (++start < limit && direction[start] == dir) {
            }
            return start;
        }
        return limit;
    }

    /*
     * create a new line with characters between charStart and charLimit
     * justified using the provided width and ratio.
     */
    public TextLine getJustifiedLine(float justificationWidth, float justifyRatio, int justStart, int justLimit) {

        TextLineComponent[] newComponents = new TextLineComponent[fComponents.length];
        System.arraycopy(fComponents, 0, newComponents, 0, fComponents.length);

        float leftHang = 0;
        float adv = 0;
        float justifyDelta = 0;
        boolean rejustify = false;
        do {
            adv = getAdvanceBetween(newComponents, 0, characterCount());

            // all characters outside the justification range must be in the base direction
            // of the layout, otherwise justification makes no sense.

            float justifyAdvance = getAdvanceBetween(newComponents, justStart, justLimit);

            // get the actual justification delta
            justifyDelta = (justificationWidth - justifyAdvance) * justifyRatio;

            // generate an array of GlyphJustificationInfo records to pass to
            // the justifier.  Array is visually ordered.

            // get positions that each component will be using
            int[] infoPositions = new int[newComponents.length];
            int infoCount = 0;
            for (int visIndex = 0; visIndex < newComponents.length; visIndex++) {
                int logIndex = getComponentLogicalIndex(visIndex);
                infoPositions[logIndex] = infoCount;
                infoCount += newComponents[logIndex].getNumJustificationInfos();
            }
            GlyphJustificationInfo[] infos = new GlyphJustificationInfo[infoCount];

            // get justification infos
            int compStart = 0;
            for (int i = 0; i < newComponents.length; i++) {
                TextLineComponent comp = newComponents[i];
                int compLength = comp.getNumCharacters();
                int compLimit = compStart + compLength;
                if (compLimit > justStart) {
                    int rangeMin = Math.max(0, justStart - compStart);
                    int rangeMax = Math.min(compLength, justLimit - compStart);
                    comp.getJustificationInfos(infos, infoPositions[i], rangeMin, rangeMax);

                    if (compLimit >= justLimit) {
                        break;
                    }
                }
            }

            // records are visually ordered, and contiguous, so start and end are
            // simply the places where we didn't fetch records
            int infoStart = 0;
            int infoLimit = infoCount;
            while (infoStart < infoLimit && infos[infoStart] == null) {
                ++infoStart;
            }

            while (infoLimit > infoStart && infos[infoLimit - 1] == null) {
                --infoLimit;
            }

            // invoke justifier on the records
            TextJustifier justifier = new TextJustifier(infos, infoStart, infoLimit);

            float[] deltas = justifier.justify(justifyDelta);

            boolean canRejustify = rejustify == false;
            boolean wantRejustify = false;
            boolean[] flags = new boolean[1];

            // apply justification deltas
            compStart = 0;
            for (int i = 0; i < newComponents.length; i++) {
                TextLineComponent comp = newComponents[i];
                int compLength = comp.getNumCharacters();
                int compLimit = compStart + compLength;
                if (compLimit > justStart) {
                    int rangeMin = Math.max(0, justStart - compStart);
                    int rangeMax = Math.min(compLength, justLimit - compStart);
                    newComponents[i] = comp.applyJustificationDeltas(deltas, infoPositions[i] * 2, flags);

                    wantRejustify |= flags[0];

                    if (compLimit >= justLimit) {
                        break;
                    }
                }
            }

            rejustify = wantRejustify && !rejustify; // only make two passes
        } while (rejustify);

        return new TextLine(frc, newComponents, fBaselineOffsets, fChars, fCharsStart, fCharsLimit,
                fCharLogicalOrder, fCharLevels, fIsDirectionLTR);
    }

    // return the sum of the advances of text between the logical start and limit
    public static float getAdvanceBetween(TextLineComponent[] components, int start, int limit) {
        float advance = 0;

        int tlcStart = 0;
        for (int i = 0; i < components.length; i++) {
            TextLineComponent comp = components[i];

            int tlcLength = comp.getNumCharacters();
            int tlcLimit = tlcStart + tlcLength;
            if (tlcLimit > start) {
                int measureStart = Math.max(0, start - tlcStart);
                int measureLimit = Math.min(tlcLength, limit - tlcStart);
                advance += comp.getAdvanceBetween(measureStart, measureLimit);
                if (tlcLimit >= limit) {
                    break;
                }
            }

            tlcStart = tlcLimit;
        }

        return advance;
    }

    LayoutPathImpl getLayoutPath() {
        return lp;
    }
}