ivory.core.preprocess.BuildWeightedIntDocVectors.java Source code

Java tutorial

Introduction

Here is the source code for ivory.core.preprocess.BuildWeightedIntDocVectors.java

Source

/*
 * Ivory: A Hadoop toolkit for Web-scale information retrieval
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0 
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package ivory.core.preprocess;

import ivory.core.RetrievalEnvironment;
import ivory.core.data.document.IntDocVector;
import ivory.core.data.document.WeightedIntDocVector;
import ivory.core.data.stat.DfTableArray;
import ivory.core.data.stat.DocLengthTable;
import ivory.core.data.stat.DocLengthTable2B;
import ivory.core.data.stat.DocLengthTable4B;
import ivory.pwsim.score.ScoringModel;

import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

import edu.umd.cloud9.io.map.HMapIFW;
import edu.umd.cloud9.util.PowerTool;
import edu.umd.cloud9.util.map.MapIF;

public class BuildWeightedIntDocVectors extends PowerTool {
    private static final Logger sLogger = Logger.getLogger(BuildWeightedIntDocVectors.class);
    static {
        sLogger.setLevel(Level.WARN);
    }

    protected static enum Docs {
        Total
    }

    private static class MyMapper extends MapReduceBase
            implements Mapper<IntWritable, IntDocVector, IntWritable, WeightedIntDocVector> {

        static IntWritable mDocno = new IntWritable();
        private static DocLengthTable mDLTable;
        private static ScoringModel mScoreFn;

        private static DfTableArray mDFTable;
        private boolean normalize = false;
        private boolean shortDocLengths = false;

        public void configure(JobConf conf) {
            sLogger.setLevel(Level.WARN);

            normalize = conf.getBoolean("Ivory.Normalize", false);
            shortDocLengths = conf.getBoolean("Ivory.ShortDocLengths", false);

            Path[] localFiles;
            try {
                // Detect if we're in standalone mode; if so, we can't us the
                // DistributedCache because it does not (currently) work in
                // standalone mode...
                if (conf.get("mapred.job.tracker").equals("local")) {
                    FileSystem fs = FileSystem.get(conf);
                    //sLogger.info ("fs: " + fs);
                    String indexPath = conf.get("Ivory.IndexPath");
                    //sLogger.info ("indexPath: " + indexPath);
                    RetrievalEnvironment env = new RetrievalEnvironment(indexPath, fs);
                    //               sLogger.info ("env: " + env);
                    localFiles = new Path[3];
                    localFiles[0] = new Path(env.getDfByIntData());
                    localFiles[1] = new Path(env.getCfByIntData());
                    localFiles[2] = env.getDoclengthsData();
                } else {
                    localFiles = DistributedCache.getLocalCacheFiles(conf);
                }
            } catch (IOException e2) {
                throw new RuntimeException("Local cache files not read properly.");
            }

            sLogger.info("localFiles: " + localFiles);
            sLogger.info("localFiles [0]: " + localFiles[0]);
            sLogger.info("localFiles [1]: " + localFiles[1]);
            sLogger.info("localFiles [2]: " + localFiles[2]);

            try {
                mDFTable = new DfTableArray(localFiles[0], FileSystem.getLocal(conf));
            } catch (IOException e1) {
                throw new RuntimeException("Error loading df table from " + localFiles[0]);
            }

            try {
                if (shortDocLengths)
                    mDLTable = new DocLengthTable2B(localFiles[2], FileSystem.getLocal(conf));
                else
                    mDLTable = new DocLengthTable4B(localFiles[2], FileSystem.getLocal(conf));
            } catch (IOException e1) {
                throw new RuntimeException("Error loading dl table from " + localFiles[2]);
            }
            try {
                mScoreFn = (ScoringModel) Class.forName(conf.get("Ivory.ScoringModel")).newInstance();

                // this only needs to be set once for the entire collection
                mScoreFn.setDocCount(mDLTable.getDocCount());
                mScoreFn.setAvgDocLength(mDLTable.getAvgDocLength());
            } catch (Exception e) {
                throw new RuntimeException(
                        "Error initializing Ivory.ScoringModel from " + conf.get("Ivory.ScoringModel"));
            }
        }

        HMapIFW vectorWeights = new HMapIFW();

        int term;
        float wt, sum2;

        public void map(IntWritable docno, IntDocVector doc,
                OutputCollector<IntWritable, WeightedIntDocVector> output, Reporter reporter) throws IOException {
            mDocno.set(docno.get());
            int docLen = mDLTable.getDocLength(mDocno.get());

            vectorWeights.clear();
            IntDocVector.Reader r = doc.getReader();
            sLogger.debug("===================================BEGIN READ DOC");
            sum2 = 0;
            while (r.hasMoreTerms()) {
                term = r.nextTerm();
                mScoreFn.setDF(mDFTable.getDf(term));
                wt = mScoreFn.computeDocumentWeight(r.getTf(), docLen);
                vectorWeights.put(term, wt);
                sum2 += wt * wt;
            }
            sLogger.debug("===================================END READ DOC");
            if (normalize) {
                /*length-normalize doc vectors*/
                sum2 = (float) Math.sqrt(sum2);
                for (MapIF.Entry e : vectorWeights.entrySet()) {
                    float score = vectorWeights.get(e.getKey());
                    vectorWeights.put(e.getKey(), score / sum2);
                }
            }
            WeightedIntDocVector weightedVector = new WeightedIntDocVector(docLen, vectorWeights);
            output.collect(mDocno, weightedVector);
            reporter.incrCounter(Docs.Total, 1);
        }
    }

    public static final String[] RequiredParameters = { "Ivory.NumMapTasks", "Ivory.IndexPath",
            //"Ivory.OutputPath",
            "Ivory.ScoringModel", "Ivory.Normalize", };

    public String[] getRequiredParameters() {
        return RequiredParameters;
    }

    public BuildWeightedIntDocVectors(Configuration conf) {
        super(conf);
    }

    @SuppressWarnings("deprecation")
    public int runTool() throws Exception {
        sLogger.setLevel(Level.WARN);

        sLogger.info("PowerTool: GetWeightedIntDocVectors");

        // create a new JobConf, inheriting from the configuration of this
        // PowerTool
        JobConf conf = new JobConf(getConf(), BuildWeightedIntDocVectors.class);
        FileSystem fs = FileSystem.get(conf);

        String indexPath = conf.get("Ivory.IndexPath");
        RetrievalEnvironment env = new RetrievalEnvironment(indexPath, fs);
        String outputPath = env.getWeightedIntDocVectorsDirectory();
        int mapTasks = conf.getInt("Ivory.NumMapTasks", 0);
        int minSplitSize = conf.getInt("Ivory.MinSplitSize", 0);
        String collectionName = conf.get("Ivory.CollectionName");

        sLogger.info("Characteristics of the collection:");
        sLogger.info(" - CollectionName: " + collectionName);
        sLogger.info("Characteristics of the job:");
        sLogger.info(" - NumMapTasks: " + mapTasks);
        sLogger.info(" - MinSplitSize: " + minSplitSize);

        String dfByIntFilePath = env.getDfByIntData();
        String cfByIntFilePath = env.getCfByIntData();

        /* add df table to cache */
        if (!fs.exists(new Path(dfByIntFilePath))) {
            throw new RuntimeException("Error, df data file " + dfByIntFilePath + "doesn't exist!");
        }
        DistributedCache.addCacheFile(new URI(dfByIntFilePath), conf);

        /* add cf table to cache */
        if (!fs.exists(new Path(cfByIntFilePath))) {
            throw new RuntimeException("Error, cf data file " + cfByIntFilePath + "doesn't exist!");
        }
        DistributedCache.addCacheFile(new URI(cfByIntFilePath), conf);

        /* add dl table to cache */
        Path docLengthFile = env.getDoclengthsData();
        if (!fs.exists(docLengthFile)) {
            throw new RuntimeException("Error, doc-length data file " + docLengthFile + "doesn't exist!");
        }
        DistributedCache.addCacheFile(docLengthFile.toUri(), conf);

        Path inputPath = new Path(env.getIntDocVectorsDirectory());
        Path weightedVectorsPath = new Path(outputPath);

        if (fs.exists(weightedVectorsPath)) {
            sLogger.info("Output path already exists!");
            return 0;
        }

        //fs.delete(weightedVectirsPath, true);

        conf.setJobName("GetWeightedIntDocVectors:" + collectionName);
        conf.setNumMapTasks(mapTasks);
        conf.setNumReduceTasks(0);
        conf.setInt("mapred.min.split.size", minSplitSize);
        conf.set("mapred.child.java.opts", "-Xmx2048m");

        FileInputFormat.setInputPaths(conf, inputPath);
        FileOutputFormat.setOutputPath(conf, weightedVectorsPath);

        conf.setInputFormat(SequenceFileInputFormat.class);
        conf.setMapOutputKeyClass(IntWritable.class);
        conf.setMapOutputValueClass(WeightedIntDocVector.class);
        conf.setOutputFormat(SequenceFileOutputFormat.class);
        conf.setOutputKeyClass(IntWritable.class);
        conf.setOutputValueClass(WeightedIntDocVector.class);

        conf.setMapperClass(MyMapper.class);
        //conf.setInt("mapred.task.timeout",3600000);

        long startTime = System.currentTimeMillis();

        RunningJob job = JobClient.runJob(conf);
        sLogger.info("Job Finished in " + (System.currentTimeMillis() - startTime) / 1000.0 + " seconds");

        return 0;
    }
}