Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // based on TeraSort from the Hadoop examples package it.crs4.seal.tsv_sort; import it.crs4.seal.common.Utils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.util.IndexedSortable; import org.apache.hadoop.util.QuickSort; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.TaskAttemptContext; import java.util.List; import java.util.ArrayList; import java.util.Arrays; import java.io.IOException; public class TextSampler implements IndexedSortable { public static final int MAX_SLICES_SAMPLED = 20; public static final int SAMPLE_SIZE_DEFAULT = 100000; static final String SAMPLE_SIZE_CONF = "textsampler.sample.size"; private ArrayList<Text> records = new ArrayList<Text>(); public int compare(int i, int j) { Text left = records.get(i); Text right = records.get(j); return left.compareTo(right); } public void swap(int i, int j) { Text left = records.get(i); Text right = records.get(j); records.set(j, left); records.set(i, right); } public void addKey(Text key) { records.add(new Text(key)); } /** * Find the split points for a given sample. The sample keys are sorted * and down sampled to find even split points for the partitions. The * returned keys should be the start of their respective partitions. * @param numPartitions the desired number of partitions * @return an array of size numPartitions - 1 that holds the split points */ Text[] createPartitions(int numPartitions) { int numRecords = records.size(); System.out.println("Making " + numPartitions + " from " + numRecords + " records"); if (numPartitions > numRecords) { throw new IllegalArgumentException( "Requested more partitions than input keys (" + numPartitions + " > " + numRecords + ")"); } new QuickSort().sort(this, 0, records.size()); float stepSize = numRecords / (float) numPartitions; System.out.println("Step size is " + stepSize); Text[] result = new Text[numPartitions - 1]; for (int i = 1; i < numPartitions; ++i) { result[i - 1] = records.get(Math.round(stepSize * i)); } return result; } /** * Use the input splits to take samples of the input and generate sample * keys. By default reads 100,000 keys from 20 locations in the input, sorts * them and picks N-1 keys to generate N equally sized partitions. * @param inFormat The input to sample * @param conf the job to sample * @param partFile where to write the output file to * @throws IOException if something goes wrong */ public static void writePartitionFile(FileInputFormat<Text, Text> inFormat, JobContext job, Path partFile) throws IOException, InterruptedException { Configuration conf = job.getConfiguration(); TaskAttemptContext taskContext = Utils.getTaskAttemptContext(conf); TextSampler sampler = new TextSampler(); Text key = new Text(); Text value = new Text(); int partitions = job.getNumReduceTasks(); long sampleSize = conf.getLong(SAMPLE_SIZE_CONF, SAMPLE_SIZE_DEFAULT); List<InputSplit> splits = inFormat.getSplits(job); int samples = Math.min(MAX_SLICES_SAMPLED, splits.size()); long recordsPerSample = sampleSize / samples; int sampleStep = splits.size() / samples; long records = 0; // take N samples from different parts of the input for (int i = 0; i < samples; ++i) { InputSplit isplit = splits.get(sampleStep * i); RecordReader<Text, Text> reader = inFormat.createRecordReader(isplit, taskContext); reader.initialize(isplit, taskContext); while (reader.nextKeyValue()) { sampler.addKey(reader.getCurrentKey()); records += 1; if ((i + 1) * recordsPerSample <= records) { break; } } } FileSystem outFs = partFile.getFileSystem(conf); if (outFs.exists(partFile)) outFs.delete(partFile, false); SequenceFile.Writer writer = SequenceFile.createWriter(outFs, conf, partFile, Text.class, NullWritable.class); NullWritable nullValue = NullWritable.get(); for (Text split : sampler.createPartitions(partitions)) { writer.append(split, nullValue); } writer.close(); } }