Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package irisdata; import weka.classifiers.Evaluation; import weka.core.Debug.Random; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.filters.Filter; import weka.filters.unsupervised.instance.RemovePercentage; /** * * @author paul */ public class IrisData { /** * @param args the command line arguments * @throws java.lang.Exception */ public static void main(String[] args) throws Exception { String file = "/Users/paul/Desktop/BYU-Idaho/Spring2015/CS450/iris.csv"; DataSource source = new DataSource(file); Instances data = source.getDataSet(); if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } data.randomize(new Random(1)); // set training set to 70% RemovePercentage remove = new RemovePercentage(); remove.setPercentage(30); remove.setInputFormat(data); Instances trainingSet = Filter.useFilter(data, remove); // set the rest for the testing set remove.setInvertSelection(true); Instances testSet = Filter.useFilter(data, remove); // train classifier - kind of HardCodedClassifier classifier = new HardCodedClassifier(); classifier.buildClassifier(trainingSet); // this does nothing right now // Evaluate classifier Evaluation eval = new Evaluation(trainingSet); eval.evaluateModel(classifier, testSet); //eval.crossValidateModel(classifier, data, 10, new Random(1)); // Print some statistics System.out.println("Results: " + eval.toSummaryString()); } }