Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * AdaBoostM1.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package gyc; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; import weka.classifiers.Sourcable; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.Randomizable; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** <!-- globalinfo-start --> * Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.<br/> * <br/> * For more information, see<br/> * <br/> * Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Freund1996, * address = {San Francisco}, * author = {Yoav Freund and Robert E. Schapire}, * booktitle = {Thirteenth International Conference on Machine Learning}, * pages = {148-156}, * publisher = {Morgan Kaufmann}, * title = {Experiments with a new boosting algorithm}, * year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -P <num> * Percentage of weight mass to base training on. * (default 100, reduce to around 90 speed up)</pre> * * <pre> -Q * Use resampling for boosting.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -I <num> * Number of iterations. * (default 10)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * * <pre> -W * Full name of base classifier. * (default: weka.classifiers.trees.DecisionStump)</pre> * * <pre> * Options specific to classifier weka.classifiers.trees.DecisionStump: * </pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.40 $ */ public class OverBoostM1 extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, Sourcable, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -7378107808933117974L; /** Max num iterations tried to find classifier with non-zero error. */ private static int MAX_NUM_RESAMPLING_ITERATIONS = 10; /** Array for storing the weights for the votes. */ protected double[] m_Betas; /** The number of successfully generated base classifiers. */ protected int m_NumIterationsPerformed; /** Weight Threshold. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** The number of classes */ protected int m_NumClasses; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** * Constructor. */ public OverBoostM1() { m_Classifier = new weka.classifiers.trees.DecisionStump(); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for boosting a nominal class classifier using the Adaboost " + "M1 method. Only nominal class problems can be tackled. Often " + "dramatically improves performance, but sometimes overfits.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.PAGES, "148-156"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.ADDRESS, "San Francisco"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.DecisionStump"; } /** * Select only instances with weights that contribute to * the specified quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select * 90% of the weight mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double[] weights = new double[numInstances]; double sumOfWeights = 0; for (int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int[] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for (int i = numInstances - 1; i >= 0; i--) { Instance instance = (Instance) data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option("\tPercentage of weight mass to base training on.\n" + "\t(default 100, reduce to around 90 speed up)", "P", 1, "-P <num>")); newVector.addElement(new Option("\tUse resampling for boosting.", "Q", 0, "-Q")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -P <num> * Percentage of weight mass to base training on. * (default 100, reduce to around 90 speed up)</pre> * * <pre> -Q * Use resampling for boosting.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -I <num> * Number of iterations. * (default 10)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * * <pre> -W * Full name of base classifier. * (default: weka.classifiers.trees.DecisionStump)</pre> * * <pre> * Options specific to classifier weka.classifiers.trees.DecisionStump: * </pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } setUseResampling(Utils.getFlag('Q', options)); super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); if (getUseResampling()) result.add("-Q"); result.add("-P"); result.add("" + getWeightThreshold()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightThresholdTipText() { return "Weight threshold for weight pruning."; } /** * Set weight threshold * * @param threshold the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useResamplingTipText() { return "Whether resampling is used instead of reweighting."; } /** * Set resampling mode * * @param r true if resampling should be done */ public void setUseResampling(boolean r) { m_UseResampling = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseResampling() { return m_UseResampling; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) result.enable(Capability.NOMINAL_CLASS); if (super.getCapabilities().handles(Capability.BINARY_CLASS)) result.enable(Capability.BINARY_CLASS); return result; } /** * Boosting method. * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { super.buildClassifier(data); // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // only class? -> build ZeroR model if (data.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); return; } else { m_ZeroR = null; } m_NumClasses = data.numClasses(); if (m_NumClasses != 2) System.err.println("Can only build model for binary class data"); /* we do not use the method buildClassifierWithWeights as we think that some base learning algorithms could not deal with weighted data. */ buildClassifierUsingResampling(data); } /** * * nMajnMin * @param data * @param i * @return */ protected Instances randomSampling(Instances copia, int majC, int minC, int nMaj, int nMin, Random simplingRandom) { int[] majExamples = new int[copia.numInstances()]; int[] minExamples = new int[copia.numInstances()]; int majCount = 0, minCount = 0; // First, we copy the examples from the minority class and save the indexes of the majority // the new data-set contains samples_min + samples_min * N / 100 int size = nMaj + nMin; //selected = new int[size]; // we store the selected examples indexes String majClassName = copia.attribute(copia.classIndex()).value(majC); Instances myDataset = new Instances(copia, 0); int nData = 0; for (int i = 0; i < copia.numInstances(); i++) { if (copia.instance(i).stringValue(copia.classIndex()).equalsIgnoreCase(majClassName)) { // save index majExamples[majCount] = i; majCount++; } else { minExamples[minCount] = i; minCount++; } } if (minCount <= 0) return copia; /* random undersampling of the majority */ //boolean[] taken = new boolean[copia.numInstances()]; int r; if (nMaj == majCount) { //System.out.println("#equal"); for (int i = 0; i < nMaj; i++) { myDataset.add(copia.instance(majExamples[i])); } } else { for (int i = 0; i < nMaj; i++) { r = simplingRandom.nextInt(majCount); //selected[nData] = majExamples[r]; myDataset.add(copia.instance(majExamples[r])); //taken[majExamples[r]] = true; } } for (int i = 0; i < nMin; i++) { r = simplingRandom.nextInt(minCount); //System.out.print("_"+r); //selected[nData] = minExamples[r]; myDataset.add(copia.instance(minExamples[r])); //taken[minExamples[r]] = true; } //System.out.println(); //System.out.println("minC="+minCount+"; majC="+majCount); myDataset.randomize(simplingRandom); return myDataset; } /** * Boosting method. Boosts using resampling * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ protected void buildClassifierUsingResampling(Instances data) throws Exception { Instances trainData, sample, training; double epsilon, reweight, sumProbs; Evaluation evaluation; int numInstances = data.numInstances(); Random randomInstance = new Random(m_Seed); int resamplingIterations = 0; // Initialize data m_Betas = new double[m_Classifiers.length]; m_NumIterationsPerformed = 0; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else training = new Instances(data, 0, numInstances); sumProbs = training.sumOfWeights(); for (int i = 0; i < training.numInstances(); i++) { training.instance(i).setWeight(training.instance(i).weight() / sumProbs); } // Do boostrap iterations for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length; m_NumIterationsPerformed++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); } // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double) m_WeightThreshold / 100); } else { trainData = new Instances(training); } // Resample resamplingIterations = 0; double[] weights = new double[trainData.numInstances()]; for (int i = 0; i < weights.length; i++) { weights[i] = trainData.instance(i).weight(); } do { sample = trainData.resampleWithWeights(randomInstance, weights); // int classNum[] = sample.attributeStats(sample.classIndex()).nominalCounts; int minC, nMin = classNum[0]; int majC, nMaj = classNum[1]; if (nMin < nMaj) { minC = 0; majC = 1; } else { minC = 1; majC = 0; nMin = classNum[1]; nMaj = classNum[0]; } //System.out.println("minC="+nMin+"; majC="+nMaj); /* * balance the data which boosting generate for training base classifier */ //System.out.println("before:"+classNum[0]+"-"+classNum[1]); Instances sampleData = randomSampling(sample, majC, minC, nMaj, nMaj, randomInstance); //classNum =sampleData.attributeStats(sampleData.classIndex()).nominalCounts; //System.out.println("after:"+classNum[0]+"-"+classNum[1]); // Build and evaluate classifier m_Classifiers[m_NumIterationsPerformed].buildClassifier(sampleData); evaluation = new Evaluation(data); evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed], training); epsilon = evaluation.errorRate(); resamplingIterations++; } while (Utils.eq(epsilon, 0) && (resamplingIterations < MAX_NUM_RESAMPLING_ITERATIONS)); // Stop if error too big or 0 if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { if (m_NumIterationsPerformed == 0) { m_NumIterationsPerformed = 1; // If we're the first we have to to use it } break; } // Determine the weight to assign to this model m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon); reweight = (1 - epsilon) / epsilon; if (m_Debug) { System.err.println("\terror rate = " + epsilon + " beta = " + m_Betas[m_NumIterationsPerformed]); } // Update instance weights setWeights(training, reweight); } } /** * Sets the weights for the next iteration. * * @param training the training instances * @param reweight the reweighting factor * @throws Exception if something goes wrong */ protected void setWeights(Instances training, double reweight) throws Exception { double oldSumOfWeights, newSumOfWeights; oldSumOfWeights = training.sumOfWeights(); Enumeration enu = training.enumerateInstances(); while (enu.hasMoreElements()) { Instance instance = (Instance) enu.nextElement(); if (!Utils.eq(m_Classifiers[m_NumIterationsPerformed].classifyInstance(instance), instance.classValue())) instance.setWeight(instance.weight() * reweight); } // Renormalize weights newSumOfWeights = training.sumOfWeights(); enu = training.enumerateInstances(); while (enu.hasMoreElements()) { Instance instance = (Instance) enu.nextElement(); instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights); } } /** * Boosting method. Boosts any classifier that can handle weighted * instances. * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ protected void buildClassifierWithWeights(Instances data) throws Exception { Instances trainData, training; double epsilon, reweight; Evaluation evaluation; int numInstances = data.numInstances(); Random randomInstance = new Random(m_Seed); // Initialize data m_Betas = new double[m_Classifiers.length]; m_NumIterationsPerformed = 0; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else training = new Instances(data, 0, numInstances); // Do boostrap iterations for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length; m_NumIterationsPerformed++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); } // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double) m_WeightThreshold / 100); } else { trainData = new Instances(training, 0, numInstances); } // Build the classifier if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable) ((Randomizable) m_Classifiers[m_NumIterationsPerformed]).setSeed(randomInstance.nextInt()); // this is the training data for building base classifier, m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData); // Evaluate the classifier evaluation = new Evaluation(data); evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed], training); epsilon = evaluation.errorRate(); // Stop if error too small or error too big and ignore this model if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) { if (m_NumIterationsPerformed == 0) { m_NumIterationsPerformed = 1; // If we're the first we have to to use it } break; } // Determine the weight to assign to this model m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon) / epsilon); reweight = (1 - epsilon) / epsilon; if (m_Debug) { System.err.println("\terror rate = " + epsilon + " beta = " + m_Betas[m_NumIterationsPerformed]); } // Update instance weights setWeights(training, reweight); } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if instance could not be classified * successfully */ public double[] distributionForInstance(Instance instance) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(instance); } if (m_NumIterationsPerformed == 0) { throw new Exception("No model built"); } double[] sums = new double[instance.numClasses()]; if (m_NumIterationsPerformed == 1) { return m_Classifiers[0].distributionForInstance(instance); } else { for (int i = 0; i < m_NumIterationsPerformed; i++) { sums[(int) m_Classifiers[i].classifyInstance(instance)] += m_Betas[i]; } return Utils.logs2probs(sums); } } /** * Returns the boosted model as Java source code. * * @param className the classname of the generated class * @return the tree as Java source code * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { if (m_NumIterationsPerformed == 0) { throw new Exception("No model built yet"); } if (!(m_Classifiers[0] instanceof Sourcable)) { throw new Exception("Base learner " + m_Classifier.getClass().getName() + " is not Sourcable"); } StringBuffer text = new StringBuffer("class "); text.append(className).append(" {\n\n"); text.append(" public static double classify(Object[] i) {\n"); if (m_NumIterationsPerformed == 1) { text.append(" return " + className + "_0.classify(i);\n"); } else { text.append(" double [] sums = new double [" + m_NumClasses + "];\n"); for (int i = 0; i < m_NumIterationsPerformed; i++) { text.append(" sums[(int) " + className + '_' + i + ".classify(i)] += " + m_Betas[i] + ";\n"); } text.append(" double maxV = sums[0];\n" + " int maxI = 0;\n" + " for (int j = 1; j < " + m_NumClasses + "; j++) {\n" + " if (sums[j] > maxV) { maxV = sums[j]; maxI = j; }\n" + " }\n return (double) maxI;\n"); } text.append(" }\n}\n"); for (int i = 0; i < m_Classifiers.length; i++) { text.append(((Sourcable) m_Classifiers[i]).toSource(className + '_' + i)); } return text.toString(); } /** * Returns description of the boosted classifier. * * @return description of the boosted classifier as a string */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } StringBuffer text = new StringBuffer(); if (m_NumIterationsPerformed == 0) { text.append("AdaBoostM1: No model built yet.\n"); } else if (m_NumIterationsPerformed == 1) { text.append("AdaBoostM1: No boosting possible, one classifier used!\n"); text.append(m_Classifiers[0].toString() + "\n"); } else { text.append("AdaBoostM1: Base classifiers and their weights: \n\n"); for (int i = 0; i < m_NumIterationsPerformed; i++) { text.append(m_Classifiers[i].toString() + "\n\n"); text.append("Weight: " + Utils.roundDouble(m_Betas[i], 2) + "\n\n"); } text.append("Number of performed Iterations: " + m_NumIterationsPerformed + "\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.40 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new OverBoostM1(), argv); } }