Java tutorial
/* * Copyright 2007-2013 VTT Biotechnology * This file is part of Guineu. * * Guineu is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * Guineu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * Guineu; if not, write to the Free Software Foundation, Inc., 51 Franklin St, * Fifth Floor, Boston, MA 02110-1301 USA */ /** * @author Taken from MZmine2 * http://mzmine.sourceforge.net/ */ package guineu.modules.dataanalysis.clustering.hierarchical; import guineu.modules.dataanalysis.clustering.ClusteringAlgorithm; import guineu.modules.dataanalysis.clustering.VisualizationType; import guineu.parameters.ParameterSet; import java.util.List; import java.util.logging.Level; import java.util.logging.Logger; import weka.clusterers.Clusterer; import weka.clusterers.HierarchicalClusterer; import weka.core.Instances; public class HierarClusterer implements ClusteringAlgorithm { private ParameterSet parameters; public HierarClusterer() { parameters = new HierarClustererParameters(); } public String toString() { return "Hierarchical Clusterer"; } public ParameterSet getParameterSet() { return parameters; } public List<Integer> getClusterGroups(Instances dataset) { return null; } public String getHierarchicalCluster(Instances dataset) { Clusterer clusterer = new HierarchicalClusterer(); String[] options = new String[5]; LinkType link = parameters.getParameter(HierarClustererParameters.linkType).getValue(); DistanceType distanceType = parameters.getParameter(HierarClustererParameters.distanceType).getValue(); options[0] = "-L"; options[1] = link.name(); options[2] = "-A"; switch (distanceType) { case EUCLIDIAN: options[3] = "weka.core.EuclideanDistance"; break; case CHEBYSHEV: options[3] = "weka.core.ChebyshevDistance"; break; case MANHATTAN: options[3] = "weka.core.ManhattanDistance"; break; case MINKOWSKI: options[3] = "weka.core.MinkowskiDistance"; break; } options[4] = "-P"; try { ((HierarchicalClusterer) clusterer).setOptions(options); clusterer.buildClusterer(dataset); return ((HierarchicalClusterer) clusterer).graph(); } catch (Exception ex) { Logger.getLogger(HierarClusterer.class.getName()).log(Level.SEVERE, null, ex); return null; } } public VisualizationType getVisualizationType() { return null; } public int getNumberOfGroups() { return 1; } }