geogebra.kernel.AlgoSimpleRootsPolynomial.java Source code

Java tutorial

Introduction

Here is the source code for geogebra.kernel.AlgoSimpleRootsPolynomial.java

Source

/* 
GeoGebra - Dynamic Mathematics for Everyone
http://www.geogebra.org
    
This file is part of GeoGebra.
    
This program is free software; you can redistribute it and/or modify it 
under the terms of the GNU General Public License as published by 
the Free Software Foundation.
    
*/

/*
 * AlgoSimpleRootsPolynomial.java
 *
 * Created on 27.07.2010, 17:41
 */

package geogebra.kernel;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.commons.math.analysis.polynomials.PolynomialFunction;

public abstract class AlgoSimpleRootsPolynomial extends AlgoIntersect {

    protected boolean setLabels;
    protected EquationSolver eqnSolver;
    protected GeoElement[] geos;
    protected OutputHandler<GeoPoint> points;

    public AlgoSimpleRootsPolynomial(Construction c) {
        super(c);
        eqnSolver = cons.getEquationSolver();
        points = new OutputHandler<GeoPoint>(new elementFactory<GeoPoint>() {
            public GeoPoint newElement() {
                GeoPoint p = new GeoPoint(cons);
                //p.setCoords(0, 0, 1);
                p.setUndefined();
                p.setParentAlgorithm(AlgoSimpleRootsPolynomial.this);
                return p;
            }
        });
    }

    public AlgoSimpleRootsPolynomial(Construction c, String[] labels, boolean setLabels, GeoElement... geos) {
        this(c);
        this.geos = new GeoElement[geos.length];
        for (int i = 0; i < geos.length; i++) {
            this.geos[i] = geos[i];
        }
        setInputOutput();
    }

    public AlgoSimpleRootsPolynomial(Construction c, GeoElement... geos) {
        this(c, null, false, geos);
    }

    /**
     * @param pf assigns a PolynomialFunction to this Algorithm which roots lead to one or more output Points
     */
    public void setRootsPolynomial(PolynomialFunction pf) {
        doCalc(pf);
    }

    public void setRootsPolynomialWithinRange(PolynomialFunction pf, double min, double max) {
        doCalc(pf, min, max);
    }

    @Override
    public GeoPoint[] getIntersectionPoints() {
        return points.getOutput(new GeoPoint[0]);
    }

    @Override
    protected GeoPoint[] getLastDefinedIntersectionPoints() {
        return null;
    }

    @Override
    protected void setInputOutput() {
        input = geos;
        setDependencies();
    }

    /**
     * @param roots array with the coefficients of the polynomial<br/>
     * the roots of the polynomial are assigned to the first n elements of <b>roots</b>
     * @param eqnSolver 
     * @return number of distinct roots
     */
    public static int getRoots(double[] roots, EquationSolver eqnSolver) {
        int nrRealRoots = eqnSolver.polynomialRoots(roots);
        //      StringBuilder sb=new StringBuilder();
        //      for (int i=0;i<nrRealRoots;i++){
        //         if (i>0)
        //            sb.append(',');
        //         sb.append(roots[i]);
        //      }
        //      Application.debug("roots->"+sb);
        if (nrRealRoots > 1) {
            int c = 0;
            Arrays.sort(roots, 0, nrRealRoots);
            double last = roots[0];
            for (int i = 1; i < nrRealRoots; i++) {
                if (roots[i] - last <= Kernel.MIN_PRECISION) {
                    c++;
                } else {
                    last = roots[i];
                    if (c > 0)
                        roots[i - c] = roots[i];
                }
            }
            nrRealRoots -= c;
        }
        return nrRealRoots;
    }

    protected void doCalc(PolynomialFunction rootsPoly) {
        double roots[] = rootsPoly.getCoefficients();
        int nrRealRoots = 0;
        if (roots.length > 1)
            nrRealRoots = getRoots(roots, eqnSolver);
        makePoints(roots, nrRealRoots);
    }

    protected void doCalc(PolynomialFunction rootsPoly, double min, double max) {
        double roots[] = rootsPoly.getCoefficients();
        int nrRealRoots = 0;
        if (roots.length > 1)
            nrRealRoots = getRoots(roots, eqnSolver);

        for (int i = 0; i < nrRealRoots; ++i) {
            if (Kernel.isGreater(roots[i], max, kernel.getEpsilon())
                    || Kernel.isGreater(min, roots[i], kernel.getEpsilon()))
                roots[i] = Double.NaN;
        }
        makePoints(roots, nrRealRoots);
    }

    private double distancePairSq(double[] p1, double[] p2) {
        return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]);
    }

    private void makePoints(double[] roots, int nrRealRoots) {
        List<double[]> valPairs = new ArrayList<double[]>();
        int len;
        for (int i = 0; i < nrRealRoots; i++) {
            len = getNrPoints(roots[i]);
            for (int j = 0; j < len; j++) {
                double[] pair = getXYPair(roots[i], j);
                for (int k = 0; k < valPairs.size(); k++) {
                    if (distancePairSq(pair, valPairs.get(k)) < Kernel.STANDARD_PRECISION) {
                        pair = null;
                        break;
                    }
                }
                if (pair != null)
                    valPairs.add(pair);
            }
        }
        setPoints(valPairs);
    }

    public void setLabels(String[] labels) {
        points.setLabels(labels);
        update();
    }

    protected void setPoints(List<double[]> valPairs) {
        points.adjustOutputSize(valPairs.size());
        for (int i = 0; i < valPairs.size(); i++) {
            points.getElement(i).setCoords(valPairs.get(i)[0], valPairs.get(i)[1], 1);
        }

        if (setLabels)
            points.updateLabels();
    }

    /**
     * @param t root of PolynomialFunction
     * @return number of corresponding outputPoints 
     */
    protected int getNrPoints(double t) {
        return 1;
    }

    /**
     * @param t root of PolynomialFunction
     * @param idx
     * @return Y-value corresponding to t and idx.
     */
    protected double getYValue(double t, int idx) {
        return getYValue(t);
    }

    /**
     * @param t root of PolynomialFunction
     * @return the corresponding Y-value
     */
    protected abstract double getYValue(double t);

    /**
     * @param t root of PolynomialFunction
     * @return the corresponding X-value
     */
    protected double getXValue(double t) {
        return t;
    }

    /**
     * @param t root of PolynomialFunction
     * @param idx
     * @return X-value corresponding to t and idx.
     */
    protected double getXValue(double t, int idx) {
        return getXValue(t);
    }

    protected double[] getXYPair(double t, int idx) {
        return new double[] { getXValue(t, idx), getYValue(t, idx) };
    }

    @Override
    public String getClassName() {
        return "AlgoSimpleRootsPoly";
    }

}