Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.analysis.polynomials; import java.io.Serializable; import java.util.Arrays; import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.exception.NoDataException; import org.apache.commons.math.analysis.DifferentiableUnivariateRealFunction; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.util.FastMath; /** * Immutable representation of a real polynomial function with real coefficients. * <p> * <a href="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a> * is used to evaluate the function.</p> * * @version $Revision: 1042376 $ $Date: 2010-12-05 16:54:55 +0100 (dim. 05 dc. 2010) $ */ public class PolynomialFunction implements DifferentiableUnivariateRealFunction, Serializable { /** * Serialization identifier */ private static final long serialVersionUID = -7726511984200295583L; /** * The coefficients of the polynomial, ordered by degree -- i.e., * coefficients[0] is the constant term and coefficients[n] is the * coefficient of x^n where n is the degree of the polynomial. */ private final double coefficients[]; /** * Construct a polynomial with the given coefficients. The first element * of the coefficients array is the constant term. Higher degree * coefficients follow in sequence. The degree of the resulting polynomial * is the index of the last non-null element of the array, or 0 if all elements * are null. * <p> * The constructor makes a copy of the input array and assigns the copy to * the coefficients property.</p> * * @param c polynomial coefficients * @throws NullPointerException if c is null * @throws NoDataException if c is empty */ public PolynomialFunction(double c[]) { super(); int n = c.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } while ((n > 1) && (c[n - 1] == 0)) { --n; } this.coefficients = new double[n]; System.arraycopy(c, 0, this.coefficients, 0, n); } /** * Compute the value of the function for the given argument. * <p> * The value returned is <br> * <code>coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]</code> * </p> * * @param x the argument for which the function value should be computed * @return the value of the polynomial at the given point * @see UnivariateRealFunction#value(double) */ public double value(double x) { return evaluate(coefficients, x); } /** * Returns the degree of the polynomial * * @return the degree of the polynomial */ public int degree() { return coefficients.length - 1; } /** * Returns a copy of the coefficients array. * <p> * Changes made to the returned copy will not affect the coefficients of * the polynomial.</p> * * @return a fresh copy of the coefficients array */ public double[] getCoefficients() { return coefficients.clone(); } /** * Uses Horner's Method to evaluate the polynomial with the given coefficients at * the argument. * * @param coefficients the coefficients of the polynomial to evaluate * @param argument the input value * @return the value of the polynomial * @throws NoDataException if coefficients is empty * @throws NullPointerException if coefficients is null */ protected static double evaluate(double[] coefficients, double argument) { int n = coefficients.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } double result = coefficients[n - 1]; for (int j = n - 2; j >= 0; j--) { result = argument * result + coefficients[j]; } return result; } /** * Add a polynomial to the instance. * @param p polynomial to add * @return a new polynomial which is the sum of the instance and p */ public PolynomialFunction add(final PolynomialFunction p) { // identify the lowest degree polynomial final int lowLength = FastMath.min(coefficients.length, p.coefficients.length); final int highLength = FastMath.max(coefficients.length, p.coefficients.length); // build the coefficients array double[] newCoefficients = new double[highLength]; for (int i = 0; i < lowLength; ++i) { newCoefficients[i] = coefficients[i] + p.coefficients[i]; } System.arraycopy((coefficients.length < p.coefficients.length) ? p.coefficients : coefficients, lowLength, newCoefficients, lowLength, highLength - lowLength); return new PolynomialFunction(newCoefficients); } /** * Subtract a polynomial from the instance. * @param p polynomial to subtract * @return a new polynomial which is the difference the instance minus p */ public PolynomialFunction subtract(final PolynomialFunction p) { // identify the lowest degree polynomial int lowLength = FastMath.min(coefficients.length, p.coefficients.length); int highLength = FastMath.max(coefficients.length, p.coefficients.length); // build the coefficients array double[] newCoefficients = new double[highLength]; for (int i = 0; i < lowLength; ++i) { newCoefficients[i] = coefficients[i] - p.coefficients[i]; } if (coefficients.length < p.coefficients.length) { for (int i = lowLength; i < highLength; ++i) { newCoefficients[i] = -p.coefficients[i]; } } else { System.arraycopy(coefficients, lowLength, newCoefficients, lowLength, highLength - lowLength); } return new PolynomialFunction(newCoefficients); } /** * Negate the instance. * @return a new polynomial */ public PolynomialFunction negate() { double[] newCoefficients = new double[coefficients.length]; for (int i = 0; i < coefficients.length; ++i) { newCoefficients[i] = -coefficients[i]; } return new PolynomialFunction(newCoefficients); } /** * Multiply the instance by a polynomial. * @param p polynomial to multiply by * @return a new polynomial */ public PolynomialFunction multiply(final PolynomialFunction p) { double[] newCoefficients = new double[coefficients.length + p.coefficients.length - 1]; for (int i = 0; i < newCoefficients.length; ++i) { newCoefficients[i] = 0.0; for (int j = FastMath.max(0, i + 1 - p.coefficients.length); j < FastMath.min(coefficients.length, i + 1); ++j) { newCoefficients[i] += coefficients[j] * p.coefficients[i - j]; } } return new PolynomialFunction(newCoefficients); } /** * Returns the coefficients of the derivative of the polynomial with the given coefficients. * * @param coefficients the coefficients of the polynomial to differentiate * @return the coefficients of the derivative or null if coefficients has length 1. * @throws NoDataException if coefficients is empty * @throws NullPointerException if coefficients is null */ protected static double[] differentiate(double[] coefficients) { int n = coefficients.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } if (n == 1) { return new double[] { 0 }; } double[] result = new double[n - 1]; for (int i = n - 1; i > 0; i--) { result[i - 1] = i * coefficients[i]; } return result; } /** * Returns the derivative as a PolynomialRealFunction * * @return the derivative polynomial */ public PolynomialFunction polynomialDerivative() { return new PolynomialFunction(differentiate(coefficients)); } /** * Returns the derivative as a UnivariateRealFunction * * @return the derivative function */ public UnivariateRealFunction derivative() { return polynomialDerivative(); } /** Returns a string representation of the polynomial. * <p>The representation is user oriented. Terms are displayed lowest * degrees first. The multiplications signs, coefficients equals to * one and null terms are not displayed (except if the polynomial is 0, * in which case the 0 constant term is displayed). Addition of terms * with negative coefficients are replaced by subtraction of terms * with positive coefficients except for the first displayed term * (i.e. we display <code>-3</code> for a constant negative polynomial, * but <code>1 - 3 x + x^2</code> if the negative coefficient is not * the first one displayed).</p> * @return a string representation of the polynomial */ @Override public String toString() { StringBuilder s = new StringBuilder(); if (coefficients[0] == 0.0) { if (coefficients.length == 1) { return "0"; } } else { s.append(Double.toString(coefficients[0])); } for (int i = 1; i < coefficients.length; ++i) { if (coefficients[i] != 0) { if (s.length() > 0) { if (coefficients[i] < 0) { s.append(" - "); } else { s.append(" + "); } } else { if (coefficients[i] < 0) { s.append("-"); } } double absAi = FastMath.abs(coefficients[i]); if ((absAi - 1) != 0) { s.append(Double.toString(absAi)); s.append(' '); } s.append("x"); if (i > 1) { s.append('^'); s.append(Integer.toString(i)); } } } return s.toString(); } /** {@inheritDoc} */ @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Arrays.hashCode(coefficients); return result; } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { if (this == obj) return true; if (!(obj instanceof PolynomialFunction)) return false; PolynomialFunction other = (PolynomialFunction) obj; if (!Arrays.equals(coefficients, other.coefficients)) return false; return true; } }