Java tutorial
/* GeoGebra - Dynamic Mathematics for Everyone http://www.geogebra.org This file is part of GeoGebra. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. */ /* * AlgoIntersectImplictpolys.java * * Created on 04.08.2010, 23:12 */ package geogebra.common.kernel.implicit; import geogebra.common.euclidian.EuclidianConstants; import geogebra.common.kernel.Construction; import geogebra.common.kernel.EquationSolverInterface; import geogebra.common.kernel.Kernel; import geogebra.common.kernel.algos.AlgoSimpleRootsPolynomial; import geogebra.common.kernel.commands.Commands; import geogebra.common.kernel.geos.GeoConic; import geogebra.common.kernel.geos.GeoPoint; import geogebra.common.kernel.polynomial.BigPolynomial; import geogebra.common.util.debug.Log; import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList; import java.util.List; import java.util.ListIterator; import org.apache.commons.math.analysis.polynomials.PolynomialFunction; /** * Algorithm to intersect two implicit polynomial equations<br /> * output: GeoPoints if finitely many intersection points. */ public class AlgoIntersectImplicitpolys extends AlgoSimpleRootsPolynomial { private GeoImplicitPoly p1; private GeoImplicitPoly p2; private GeoConic c1; private List<double[]> valPairs; private static final int PolyX = 0; private static final int PolyY = 1; private int univarType; private List<GeoPoint> hints; /** * To compute intersection of polynomial and conic * @param c construction * @param p1 polynomial * @param c1 conic */ public AlgoIntersectImplicitpolys(Construction c, GeoImplicitPoly p1, GeoConic c1) { this(c, null, false, p1, c1); } /** * To compute intersection of polynomial and conic * @param c construction * @param labels labels for results * @param setLabels true to set labels * @param p1 polynomial * @param c1 conic */ public AlgoIntersectImplicitpolys(Construction c, String[] labels, boolean setLabels, GeoImplicitPoly p1, GeoConic c1) { super(c, p1, c1); this.p1 = p1; this.c1 = c1; initForNearToRelationship(); compute(); } /** * To compute intersection of two polynomials * @param c construction * @param p1 first polynomial * @param p2 second polynomial */ public AlgoIntersectImplicitpolys(Construction c, GeoImplicitPoly p1, GeoImplicitPoly p2) { this(c, null, false, p1, p2); } /** * To compute intersection of two polynomials * @param c construction * @param labels labels for results * @param setLabels true to set labels * @param p1 first polynomial * @param p2 second polynomial */ public AlgoIntersectImplicitpolys(Construction c, String[] labels, boolean setLabels, GeoImplicitPoly p1, GeoImplicitPoly p2) { super(c, p1, p2); this.p1 = p1; this.p2 = p2; initForNearToRelationship(); compute(); } // protected boolean rootPolishing(double[] pair){ // double x=pair[0],y=pair[1]; // double p,q; // p=p1.evalPolyAt(x, y); // q=p2.evalPolyAt(x, y); // double lastErr=Double.MAX_VALUE; // double err=Math.abs(p)+Math.abs(q); // while(err<lastErr&&err>Kernel.STANDARD_PRECISION){ // double px,py; // double qx,qy; // px=p1.evalDiffXPolyAt(x, y); // py=p1.evalDiffYPolyAt(x, y); // qx=p2.evalDiffXPolyAt(x, y); // qy=p2.evalDiffYPolyAt(x, y); // double det=px*qy-py*qx; // if (AbstractKernel.isZero(det)){ // break; // } // x-=(p*qy-q*py)/det; // y-=(q*px-p*qx)/det; // lastErr=err; // p=p1.evalPolyAt(x, y); // q=p2.evalPolyAt(x, y); // err=Math.abs(p)+Math.abs(q); // } // pair[0]=x; // pair[1]=y; // return err<Kernel.STANDARD_PRECISION; // } @Override protected double getYValue(double t) { //will not be used return 0; } /** * Computes with high precision */ protected void computeWithHigherPrecision() { if (c1 != null) { p2 = new GeoImplicitPoly(c1); } if (valPairs == null) { valPairs = new LinkedList<double[]>(); } else { valPairs.clear(); } /* * New approach: calculating determinant of Sylvester-matrix to get resolvent * */ // Application.debug("p1="+p1); // Application.debug("p2="+p2); GeoImplicitPoly a = p1, b = p2; if (p1.getDegX() < p2.getDegX()) { a = p2; b = p1; } int m = a.getDegX(); int n = b.getDegX(); //calculate the reduced Sylvester matrix. Complexity will be O(mnpq + m^2nq^2 + n^3pq) //where p=a.getDegY(), q=b.getDegY() //we should minimize m^2 n q^2 by choosing to use polyX or polyY univarType. int precision = 50; // int q = a.getDegY(); BigPolynomial[][] mat = new BigPolynomial[n][n]; BigPolynomial[] aNew = new BigPolynomial[m + n]; BigPolynomial[] bPolys = new BigPolynomial[n + 1]; for (int i = 0; i <= n; ++i) bPolys[i] = new BigPolynomial(b.getCoeff()[i], precision); for (int i = 0; i < n - 1; ++i) aNew[i] = new BigPolynomial(0, precision); for (int i = n - 1; i < n + m; ++i) aNew[i] = new BigPolynomial(a.getCoeff()[i - n + 1], precision); int leadIndex = n + m - 1; //Note: leadIndex of (n+1+t)-th row is equal to X-degree of b, + t. Use //this row to help eliminate aNew[leadIndex]. while (leadIndex >= 2 * n) { // aNew[leadIndex]=aNew[leadIndex]; if (!(aNew[leadIndex].degree() == 0 && Kernel.isZero(aNew[leadIndex].getCoeffDouble(0)))) { for (int j = n - 1; j < leadIndex - n; ++j) aNew[j] = aNew[j].multiply(bPolys[n]); for (int j = leadIndex - n; j < leadIndex; ++j) aNew[j] = aNew[j].multiply(bPolys[n]) .subtract(bPolys[j - leadIndex + n].multiply(aNew[leadIndex])); } --leadIndex; } while (leadIndex >= n) { // aNew[leadIndex]=aNew[leadIndex]; if (!(aNew[leadIndex].degree() == 0 && Kernel.isZero(aNew[leadIndex].getCoeffDouble(0)))) { for (int j = leadIndex - n; j < leadIndex; ++j) aNew[j] = aNew[j].multiply(bPolys[n]) .subtract(bPolys[j - leadIndex + n].multiply(aNew[leadIndex])); } for (int j = 0; j < n; ++j) mat[2 * n - 1 - leadIndex][j] = aNew[leadIndex - n + j].copy(); --leadIndex; } //avoid too large coefficients //test case: a: -5 x?+ x+ y = 0m, b: -20 x+2 x+2 x+2 y+4 y = 0 //without reducing coefficients, we get three intersection points: // (0.00000185192649, -0.000000925965389), (0.475635148394481, 0.172245588226639), (2.338809137914722, -12.005665890026151) //after reducing coefficients, we have one more: the tangent point (0.99999997592913, 1.999999891681086) // for (int i=0; i<n; ++i) { // // double largestCoeff = 0; // double reduceFactor = 1; // for (int j=0; j<n; ++j) { // for (int k=0; k<=mat[i][j].degree(); ++k) { // largestCoeff = Math.max(Math.abs(mat[i][j].getCoefficients()[k]), largestCoeff); // } // } // while (largestCoeff > 10) { // reduceFactor *= 0.1; // largestCoeff *= 0.1; // } // // if (reduceFactor!=1) { // for (int j=0; j<n; ++j) { // mat[i][j] = mat[i][j].multiply(new PolynomialFunction(new double[] {reduceFactor})); // } // } // } //Calculate Sylvester matrix by definition. Complexity will be O((m+n)^3 * pq) //where p=a.getDegY(), q=b.getDegY() /* PolynomialFunction[][] mat=new PolynomialFunction[m+n][m+n]; for (int i = 0; i<n; ++i) { for (int j = 0; j<i; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); for (int j = i; j<= i+m; ++j) mat[i][j] = new PolynomialFunction(a.getCoeff()[j-i]); for (int j = i+m+1; j<n+m; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); } for (int i = n; i<m+n; ++i) { for (int j = 0; j<i-n; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); for (int j = i-n; j<= i; ++j) mat[i][j] = new PolynomialFunction(b.getCoeff()[j-i+n]); for (int j = i+1; j<n+m; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); } */ //old code /*PolynomialFunction[][] mat=new PolynomialFunction[n][n]; for (int i=0;i<n;i++){ for (int j=0;j<n;j++){ mat[i][j]=new PolynomialFunction(new double[]{0}); for (int k=Math.max(0, i-j);k<=Math.min(i, m+i-j);k++){ PolynomialFunction p=new PolynomialFunction(b.getCoeff()[k]); mat[i][j]=mat[i][j].add(p.multiply(new PolynomialFunction(a.getCoeff()[m+i-k-j]))); } for (int k=Math.max(0, i+m-j-n);k<=Math.min(i, m+i-j);k++){ PolynomialFunction p=new PolynomialFunction(a.getCoeff()[k]); mat[i][j]=mat[i][j].subtract(p.multiply(new PolynomialFunction(b.getCoeff()[m+i-k-j]))); } } }*/ // Application.debug(Arrays.deepToString(mat)); //Gau-Bareiss for calculating the determinant BigPolynomial c = new BigPolynomial(1, precision); BigPolynomial det = null; for (int k = 0; k < n - 1; k++) { int r = 0; double glc = -1; //greatest leading coefficient for (int i = k; i < n; i++) { double lc = mat[i][k].getCoeffDouble(mat[i][k].degree());//PolynomialUtils.getDegree(mat[i][k])); if (!mat[i][k].isZeroPolynomial()) { if (Math.abs(lc) > glc) { glc = Math.abs(lc); r = i; } } } if (glc <= -1) { //all polynomials are zero det = new BigPolynomial(0, precision); break; } else if (r > k) { for (int j = k; j < n; j++) { //exchange functions BigPolynomial temp = mat[r][j]; mat[r][j] = mat[k][j]; mat[k][j] = temp; } } for (int i = k + 1; i < n; i++) { for (int j = k + 1; j < n; j++) { BigPolynomial t1 = mat[i][j].multiply(mat[k][k]); BigPolynomial t2 = mat[i][k].multiply(mat[k][j]); BigPolynomial t = t1.subtract(t2); mat[i][j] = t.divide(c); } } c = mat[k][k]; } if (det == null) det = mat[n - 1][n - 1]; // Application.debug("resultante = "+det); univarType = PolyY; double roots[] = det.getRealRootsDouble(precision); int nrRealRoots = roots.length; if (nrRealRoots == 0) { Log.debug(det); } // double roots[]=det.getCoefficientsDouble(); // int nrRealRoots=0; // if (roots.length>1) // nrRealRoots=getNearRoots(roots,eqnSolver,1E-1);//getRoots(roots,eqnSolver); // if (nrRealRoots==0){ // Application.debug(det.toString()); // } double[][] coeff; double[] newCoeff; if (univarType == PolyX) { if (p1.getDegY() < p2.getDegY()) { coeff = p1.getCoeff(); newCoeff = new double[p1.getDegY() + 1]; } else { coeff = p2.getCoeff(); newCoeff = new double[p2.getDegY() + 1]; } } else { if (p1.getDegX() < p2.getDegX()) { coeff = p1.getCoeff(); newCoeff = new double[p1.getDegX() + 1]; } else { coeff = p2.getCoeff(); newCoeff = new double[p2.getDegX() + 1]; } } for (int k = 0; k < nrRealRoots; k++) { double t = roots[k]; if (univarType == PolyX) { for (int j = 0; j < newCoeff.length; j++) { newCoeff[j] = 0; } for (int i = coeff.length - 1; i >= 0; i--) { for (int j = 0; j < coeff[i].length; j++) { newCoeff[j] = newCoeff[j] * t + coeff[i][j]; } for (int j = coeff[i].length; j < newCoeff.length; j++) { newCoeff[j] = newCoeff[j] * t; } } } else { for (int i = 0; i < coeff.length; i++) { newCoeff[i] = 0; for (int j = coeff[i].length - 1; j >= 0; j--) { newCoeff[i] = newCoeff[i] * t + coeff[i][j]; } } } int nr = getNearRoots(newCoeff, eqnSolver, 1E-1);//getRoots(newCoeff,eqnSolver); for (int i = 0; i < nr; i++) { double[] pair = new double[2]; if (univarType == PolyX) { pair[0] = t; pair[1] = newCoeff[i]; } else { pair[0] = newCoeff[i]; pair[1] = t; } // Application.debug("polishing pair "+Arrays.toString(pair)); if (PolynomialUtils.rootPolishing(pair, p1, p2)) insert(pair); else { // Application.debug("polishing pair "+Arrays.toString(pair)+" failed."); } } } if (hints != null) { for (int i = 0; i < hints.size(); i++) { double[] pair = new double[2]; GeoPoint g = hints.get(i); if (g.isDefined() && !Kernel.isZero(g.getZ())) { pair[0] = g.getX() / g.getZ(); pair[1] = g.getY() / g.getZ(); } } } setPoints(valPairs); } @Override public void compute() { if (c1 != null) { p2 = new GeoImplicitPoly(c1); } if (valPairs == null) { valPairs = new LinkedList<double[]>(); } else { valPairs.clear(); } /* * New approach: calculating determinant of Sylvester-matrix to get resolvent * */ // Application.debug("p1="+p1); // Application.debug("p2="+p2); GeoImplicitPoly a = p1, b = p2; if (p1.getDegX() < p2.getDegX()) { a = p2; b = p1; } int m = a.getDegX(); int n = b.getDegX(); //calculate the reduced Sylvester matrix. Complexity will be O(mnpq + m^2nq^2 + n^3pq) //where p=a.getDegY(), q=b.getDegY() //we should minimize m^2 n q^2 by choosing to use polyX or polyY univarType. // int q = a.getDegY(); PolynomialFunction[][] mat = new PolynomialFunction[n][n]; PolynomialFunction[] aNew = new PolynomialFunction[m + n]; PolynomialFunction[] bPolys = new PolynomialFunction[n + 1]; for (int i = 0; i <= n; ++i) bPolys[i] = new PolynomialFunction(b.getCoeff()[i]); for (int i = 0; i < n - 1; ++i) aNew[i] = new PolynomialFunction(new double[] { 0 }); for (int i = n - 1; i < n + m; ++i) aNew[i] = new PolynomialFunction(a.getCoeff()[i - n + 1]); int leadIndex = n + m - 1; //Note: leadIndex of (n+1+t)-th row is equal to X-degree of b, + t. Use //this row to help eliminate aNew[leadIndex]. while (leadIndex >= 2 * n) { if (!(aNew[leadIndex].degree() == 0 && aNew[leadIndex].getCoefficients()[0] == 0)) { for (int j = n - 1; j < leadIndex - n; ++j) aNew[j] = aNew[j].multiply(bPolys[n]); for (int j = leadIndex - n; j < leadIndex; ++j) aNew[j] = aNew[j].multiply(bPolys[n]) .subtract(bPolys[j - leadIndex + n].multiply(aNew[leadIndex])); } --leadIndex; } while (leadIndex >= n) { if (!(aNew[leadIndex].degree() == 0 && aNew[leadIndex].getCoefficients()[0] == 0)) { for (int j = leadIndex - n; j < leadIndex; ++j) aNew[j] = aNew[j].multiply(bPolys[n]) .subtract(bPolys[j - leadIndex + n].multiply(aNew[leadIndex])); } for (int j = 0; j < n; ++j) mat[2 * n - 1 - leadIndex][j] = new PolynomialFunction(aNew[leadIndex - n + j].getCoefficients()); --leadIndex; } //avoid too large coefficients //test case: a: -5 x?+ x+ y = 0m, b: -20 x+2 x+2 x+2 y+4 y = 0 //without reducing coefficients, we get three intersection points: // (0.00000185192649, -0.000000925965389), (0.475635148394481, 0.172245588226639), (2.338809137914722, -12.005665890026151) //after reducing coefficients, we have one more: the tangent point (0.99999997592913, 1.999999891681086) for (int i = 0; i < n; ++i) { double largestCoeff = 0; double reduceFactor = 1; for (int j = 0; j < n; ++j) { for (int k = 0; k < mat[i][j].getCoefficients().length; ++k) { largestCoeff = Math.max(Math.abs(mat[i][j].getCoefficients()[k]), largestCoeff); } } while (largestCoeff > 10) { reduceFactor *= 0.1; largestCoeff *= 0.1; } if (reduceFactor != 1) { for (int j = 0; j < n; ++j) { mat[i][j] = mat[i][j].multiply(new PolynomialFunction(new double[] { reduceFactor })); } } } //Calculate Sylvester matrix by definition. Complexity will be O((m+n)^3 * pq) //where p=a.getDegY(), q=b.getDegY() /* PolynomialFunction[][] mat=new PolynomialFunction[m+n][m+n]; for (int i = 0; i<n; ++i) { for (int j = 0; j<i; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); for (int j = i; j<= i+m; ++j) mat[i][j] = new PolynomialFunction(a.getCoeff()[j-i]); for (int j = i+m+1; j<n+m; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); } for (int i = n; i<m+n; ++i) { for (int j = 0; j<i-n; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); for (int j = i-n; j<= i; ++j) mat[i][j] = new PolynomialFunction(b.getCoeff()[j-i+n]); for (int j = i+1; j<n+m; ++j) mat[i][j] = new PolynomialFunction(new double[]{0}); } */ //old code /*PolynomialFunction[][] mat=new PolynomialFunction[n][n]; for (int i=0;i<n;i++){ for (int j=0;j<n;j++){ mat[i][j]=new PolynomialFunction(new double[]{0}); for (int k=Math.max(0, i-j);k<=Math.min(i, m+i-j);k++){ PolynomialFunction p=new PolynomialFunction(b.getCoeff()[k]); mat[i][j]=mat[i][j].add(p.multiply(new PolynomialFunction(a.getCoeff()[m+i-k-j]))); } for (int k=Math.max(0, i+m-j-n);k<=Math.min(i, m+i-j);k++){ PolynomialFunction p=new PolynomialFunction(a.getCoeff()[k]); mat[i][j]=mat[i][j].subtract(p.multiply(new PolynomialFunction(b.getCoeff()[m+i-k-j]))); } } }*/ // Application.debug(Arrays.deepToString(mat)); //Gau-Bareiss for calculating the determinant PolynomialFunction c = new PolynomialFunction(new double[] { 1 }); PolynomialFunction det = null; for (int k = 0; k < n - 1; k++) { int r = 0; double glc = 0; //greatest leading coefficient for (int i = k; i < n; i++) { double lc = PolynomialUtils.getLeadingCoeff(mat[i][k]); if (!Kernel.isZero(lc)) { if (Math.abs(lc) > Math.abs(glc)) { glc = lc; r = i; } } } if (Kernel.isZero(glc)) { det = new PolynomialFunction(new double[] { 0 }); break; } else if (r > k) { for (int j = k; j < n; j++) { //exchange functions PolynomialFunction temp = mat[r][j]; mat[r][j] = mat[k][j]; mat[k][j] = temp; } } for (int i = k + 1; i < n; i++) { for (int j = k + 1; j < n; j++) { PolynomialFunction t1 = mat[i][j].multiply(mat[k][k]); PolynomialFunction t2 = mat[i][k].multiply(mat[k][j]); PolynomialFunction t = t1.subtract(t2); mat[i][j] = PolynomialUtils.polynomialDivision(t, c); } } c = mat[k][k]; } if (det == null) det = mat[n - 1][n - 1]; // Application.debug("resultante = "+det); univarType = PolyY; double roots[] = det.getCoefficients(); // roots[0]-=0.001; int nrRealRoots = 0; if (roots.length > 1) nrRealRoots = getNearRoots(roots, eqnSolver, 1E-1);//getRoots(roots,eqnSolver); double[][] coeff; double[] newCoeff; if (univarType == PolyX) { if (p1.getDegY() < p2.getDegY()) { coeff = p1.getCoeff(); newCoeff = new double[p1.getDegY() + 1]; } else { coeff = p2.getCoeff(); newCoeff = new double[p2.getDegY() + 1]; } } else { if (p1.getDegX() < p2.getDegX()) { coeff = p1.getCoeff(); newCoeff = new double[p1.getDegX() + 1]; } else { coeff = p2.getCoeff(); newCoeff = new double[p2.getDegX() + 1]; } } for (int k = 0; k < nrRealRoots; k++) { double t = roots[k]; if (univarType == PolyX) { for (int j = 0; j < newCoeff.length; j++) { newCoeff[j] = 0; } for (int i = coeff.length - 1; i >= 0; i--) { for (int j = 0; j < coeff[i].length; j++) { newCoeff[j] = newCoeff[j] * t + coeff[i][j]; } for (int j = coeff[i].length; j < newCoeff.length; j++) { newCoeff[j] = newCoeff[j] * t; } } } else { for (int i = 0; i < coeff.length; i++) { newCoeff[i] = 0; for (int j = coeff[i].length - 1; j >= 0; j--) { newCoeff[i] = newCoeff[i] * t + coeff[i][j]; } } } int nr = getNearRoots(newCoeff, eqnSolver, 1E-1);//getRoots(newCoeff,eqnSolver); for (int i = 0; i < nr; i++) { double[] pair = new double[2]; if (univarType == PolyX) { pair[0] = t; pair[1] = newCoeff[i]; } else { pair[0] = newCoeff[i]; pair[1] = t; } if (PolynomialUtils.rootPolishing(pair, p1, p2)) insert(pair); } } if (hints != null) { for (int i = 0; i < hints.size(); i++) { double[] pair = new double[2]; GeoPoint g = hints.get(i); if (g.isDefined() && !Kernel.isZero(g.getZ())) { pair[0] = g.getX() / g.getZ(); pair[1] = g.getY() / g.getZ(); } } } setPoints(valPairs); } private static int getNearRoots(double[] roots, EquationSolverInterface solver, double epsilon) { PolynomialFunction poly = new PolynomialFunction(roots); double[] rootsDerivative = poly.polynomialDerivative().getCoefficients(); int nrRoots = getRoots(roots, solver); int nrDeRoots = getRoots(rootsDerivative, solver); for (int i = 0; i < nrDeRoots; i++) { if (Kernel.isEqual(poly.value(rootsDerivative[i]), 0, epsilon)) { if (nrRoots < roots.length) { roots[nrRoots++] = rootsDerivative[i]; } } } if (nrRoots == 0) { //a wild guess, test if the root of the n-1 derivative is a root of the original poly as well //works in case of a polynomial with one root of really high multiplicity. double[] c = poly.getCoefficients(); int n = c.length - 1; if (n > 0) { double x = -c[n - 1] / n / c[n]; if (Kernel.isEqual(poly.value(x), 0)) { roots[0] = x; return 1; } } } if (nrRoots == 0) { PolynomialFunction derivative = poly.polynomialDerivative(); double x = 0; double err = Math.abs(poly.value(x)); double lastErr = err * 2; while (err < lastErr && err > Kernel.STANDARD_PRECISION) { double devVal = derivative.value(x); if (!Kernel.isZero(devVal)) x = x - poly.value(x) / devVal; else break; lastErr = err; err = Math.abs(poly.value(x)); } if (Kernel.isEqual(poly.value(x), 0, epsilon)) { roots[0] = x; return 1; } } Arrays.sort(roots, 0, nrRoots); return nrRoots; } // public static int getNearRoots2(double[] roots,EquationSolver solver,double epsilon){ // int degree=PolynomialUtils.getDegree(roots); // double lc=roots[degree]; // int status=(((degree&1)==1)^(lc>0)?0:5); // // // double[] minusEps=roots.clone(); // double[] plusEps=roots.clone(); // plusEps[0]+=epsilon; // minusEps[0]-=epsilon; // int nrMRoots=getRoots(minusEps,solver); // int nrPRoots=getRoots(plusEps,solver); // int nrRoots=getRoots(roots,solver); // //// if (nrMRoots>1){ //// Arrays.sort(minusEps, 0, nrMRoots); //// } //// if (nrRoots>1){ //// Arrays.sort(minusEps, 0, nrRoots); //// } //// if (nrPRoots>1){ //// Arrays.sort(plusEps, 0, nrPRoots); //// } // // // we use here, that a polynomial of degree n has n+1 coefficients but at most n roots. // minusEps[nrMRoots]=Double.POSITIVE_INFINITY; // plusEps[nrPRoots]=Double.POSITIVE_INFINITY; // roots[nrRoots]=Double.POSITIVE_INFINITY; // // int mI=0; // int pI=0; // int i=0; // int nrNearRoots=0; // while(mI<nrMRoots||pI<nrPRoots||i<nrRoots){ // if (status==0){ // if (minusEps[mI]<roots[i]&&minusEps[mI]<plusEps[pI]){ // mI++; // status=1; // }else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // }else if (status==1){ // if (minusEps[mI]<plusEps[pI]||roots[i]<plusEps[pI]){ // if (minusEps[mI]<roots[i]){ // //nearRoot // roots[nrRoots+1+nrNearRoots]=(minusEps[mI]-minusEps[mI-1])/2; //assume "near Root" is in the middle // nrNearRoots++; // mI++; // status=0; // }else{ // //real Root // i++; // status=3; // } // }else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // }else if (status==2){ // if (minusEps[mI]<plusEps[pI]||roots[i]<plusEps[pI]){ // if (minusEps[mI]<roots[i]){ // mI++; // status=0; // }else{ // //real Root // i++; // status=3; // } // } // else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // }else if (status==3){ // if (plusEps[pI]<minusEps[mI]||roots[i]<minusEps[mI]){ // if (plusEps[pI]<roots[i]){ // pI++; // status=5; // }else{ // //real Root // i++; // status=2; // } // } // else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // }else if (status==4){ // if (plusEps[pI]<minusEps[mI]||roots[i]<minusEps[mI]){ // if (plusEps[pI]<roots[i]){ // //nearRoot // roots[nrRoots+nrNearRoots]=(plusEps[pI]-plusEps[pI-1])/2; //assume "near Root" is in the middle // nrNearRoots++; // pI++; // status=5; // }else{ // //real Root // i++; // status=2; // } // }else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // }else if (status==5){ // if (plusEps[pI]<roots[i]&&plusEps[pI]<minusEps[mI]){ // pI++; // status=4; // }else{ // Application.debug(String.format("problem in status %d, plusEps=%f,roots=%f,minEps=%f", status,minusEps[mI],roots[i],plusEps[pI])); // return nrRoots; // } // } // } // Arrays.sort(roots,0,nrRoots+nrNearRoots+1); // return nrRoots+nrNearRoots; // } private void insert(double[] pair) { ListIterator<double[]> it = valPairs.listIterator(); double eps = 1E-3; //find good value... while (it.hasNext()) { double[] p = it.next(); if (Kernel.isGreater(p[0], pair[0], eps)) { it.previous(); break; } if (Kernel.isEqual(p[0], pair[0], eps)) { if (Kernel.isGreater(p[1], pair[1], eps)) { it.previous(); break; } if (Kernel.isEqual(p[1], pair[1], eps)) return; //do not add } } it.add(pair); } @Override public Commands getClassName() { return Commands.Intersect; } @Override public int getRelatedModeID() { return EuclidianConstants.MODE_INTERSECT; } /** * adds a point which will always be tested if it's a solution * @param point point to be always tested */ public void addSolutionHint(GeoPoint point) { if (hints == null) { hints = new ArrayList<GeoPoint>(); } hints.add(point); } }