GClass.EvaluationInternal.java Source code

Java tutorial

Introduction

Here is the source code for GClass.EvaluationInternal.java

Source

package GClass;

/**
 * <p>Title: </p>
 *
 * <p>Description: </p>
 *
 * <p>Copyright: Copyright (c) 2006</p>
 *
 * <p>Company: </p>
 *
 * @author not attributable
 * @version 1.0
 */
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    EvaluationInternal.java
 *    Copyright (C) 1999 Eibe Frank,Len Trigg
 *
 */

import weka.classifiers.*;

import java.util.*;
import java.io.*;
import weka.core.*;
import weka.estimators.*;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

/**
 * Class for evaluating machine learning models. <p>
 *
 * ------------------------------------------------------------------- <p>
 *
 * General options when evaluating a learning scheme from the command-line: <p>
 *
 * -t filename <br>
 * Name of the file with the training data. (required) <p>
 *
 * -T filename <br>
 * Name of the file with the test data. If missing a cross-validation
 * is performed. <p>
 *
 * -c index <br>
 * Index of the class attribute (1, 2, ...; default: last). <p>
 *
 * -x number <br>
 * The number of folds for the cross-validation (default: 10). <p>
 *
 * -s seed <br>
 * Random number seed for the cross-validation (default: 1). <p>
 *
 * -m filename <br>
 * The name of a file containing a cost matrix. <p>
 *
 * -l filename <br>
 * Loads classifier from the given file. <p>
 *
 * -d filename <br>
 * Saves classifier built from the training data into the given file. <p>
 *
 * -v <br>
 * Outputs no statistics for the training data. <p>
 *
 * -o <br>
 * Outputs statistics only, not the classifier. <p>
 *
 * -i <br>
 * Outputs information-retrieval statistics per class. <p>
 *
 * -k <br>
 * Outputs information-theoretic statistics. <p>
 *
 * -p range <br>
 * Outputs predictions for test instances, along with the attributes in
 * the specified range (and nothing else). Use '-p 0' if no attributes are
 * desired. <p>
 *
 * -r <br>
 * Outputs cumulative margin distribution (and nothing else). <p>
 *
 * -g <br>
 * Only for classifiers that implement "Graphable." Outputs
 * the graph representation of the classifier (and nothing
 * else). <p>
 *
 * ------------------------------------------------------------------- <p>
 *
 * Example usage as the main of a classifier (called FunkyClassifier):
 * <code> <pre>
 * public static void main(String [] args) {
 *   try {
 *     Classifier scheme = new FunkyClassifier();
 *     System.out.println(Evaluation.evaluateModel(scheme, args));
 *   } catch (Exception e) {
 *     System.err.println(e.getMessage());
 *   }
 * }
 * </pre> </code>
 * <p>
 *
 * ------------------------------------------------------------------ <p>
 *
 * Example usage from within an application:
 * <code> <pre>
 * Instances trainInstances = ... instances got from somewhere
 * Instances testInstances = ... instances got from somewhere
 * Classifier scheme = ... scheme got from somewhere
 *
 * Evaluation evaluation = new Evaluation(trainInstances);
 * evaluation.evaluateModel(scheme, testInstances);
 * System.out.println(evaluation.toSummaryString());
 * </pre> </code>
 *
 *
 * @author   Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author   Len Trigg (trigg@cs.waikato.ac.nz)
 * @version  $Revision: 1.53.2.2 $
 */
public class EvaluationInternal implements Summarizable {

    /** The number of classes. */
    protected int m_NumClasses;

    /** The number of folds for a cross-validation. */
    protected int m_NumFolds;

    /** The weight of all incorrectly classified instances. */
    protected double m_Incorrect;

    /** The weight of all correctly classified instances. */
    protected double m_Correct;

    /** The weight of all unclassified instances. */
    protected double m_Unclassified;

    /*** The weight of all instances that had no class assigned to them. */
    protected double m_MissingClass;

    /** The weight of all instances that had a class assigned to them. */
    protected double m_WithClass;

    /** Array for storing the confusion matrix. */
    protected double[][] m_ConfusionMatrix;

    /** The names of the classes. */
    protected String[] m_ClassNames;

    /** Is the class nominal or numeric? */
    protected boolean m_ClassIsNominal;

    /** The prior probabilities of the classes */
    protected double[] m_ClassPriors;

    /** The sum of counts for priors */
    protected double m_ClassPriorsSum;

    /** The cost matrix (if given). */
    protected CostMatrix m_CostMatrix;

    /** The total cost of predictions (includes instance weights) */
    protected double m_TotalCost;

    /** Sum of errors. */
    protected double m_SumErr;

    /** Sum of absolute errors. */
    protected double m_SumAbsErr;

    /** Sum of squared errors. */
    protected double m_SumSqrErr;

    /** Sum of class values. */
    protected double m_SumClass;

    /** Sum of squared class values. */
    protected double m_SumSqrClass;

    /*** Sum of predicted values. */
    protected double m_SumPredicted;

    /** Sum of squared predicted values. */
    protected double m_SumSqrPredicted;

    /** Sum of predicted * class values. */
    protected double m_SumClassPredicted;

    /** Sum of absolute errors of the prior */
    protected double m_SumPriorAbsErr;

    /** Sum of absolute errors of the prior */
    protected double m_SumPriorSqrErr;

    /** Total Kononenko & Bratko Information */
    protected double m_SumKBInfo;

    /*** Resolution of the margin histogram */
    protected static int k_MarginResolution = 500;

    /** Cumulative margin distribution */
    protected double m_MarginCounts[];

    /** Number of non-missing class training instances seen */
    protected int m_NumTrainClassVals;

    /** Array containing all numeric training class values seen */
    protected double[] m_TrainClassVals;

    /** Array containing all numeric training class weights */
    protected double[] m_TrainClassWeights;

    /** Numeric class error estimator for prior */
    protected Estimator m_PriorErrorEstimator;

    /** Numeric class error estimator for scheme */
    protected Estimator m_ErrorEstimator;

    /**
     * The minimum probablility accepted from an estimator to avoid
     * taking log(0) in Sf calculations.
     */
    protected static final double MIN_SF_PROB = Double.MIN_VALUE;

    /** Total entropy of prior predictions */
    protected double m_SumPriorEntropy;

    /** Total entropy of scheme predictions */
    protected double m_SumSchemeEntropy;

    /**
     * Initializes all the counters for the evaluation.
     *
     * @param data set of training instances, to get some header
     * information and prior class distribution information
     * @exception Exception if the class is not defined
     */
    public EvaluationInternal(Instances data) throws Exception {

        this(data, null);
    }

    /**
     * Initializes all the counters for the evaluation and also takes a
     * cost matrix as parameter.
     *
     * @param data set of instances, to get some header information
     * @param costMatrix the cost matrix---if null, default costs will be used
     * @exception Exception if cost matrix is not compatible with
     * data, the class is not defined or the class is numeric
     */
    public EvaluationInternal(Instances data, CostMatrix costMatrix) throws Exception {

        m_NumClasses = data.numClasses();
        m_NumFolds = 1;
        m_ClassIsNominal = data.classAttribute().isNominal();

        if (m_ClassIsNominal) {
            m_ConfusionMatrix = new double[m_NumClasses][m_NumClasses];
            m_ClassNames = new String[m_NumClasses];
            for (int i = 0; i < m_NumClasses; i++) {
                m_ClassNames[i] = data.classAttribute().value(i);
            }
        }
        m_CostMatrix = costMatrix;
        if (m_CostMatrix != null) {
            if (!m_ClassIsNominal) {
                throw new Exception("Class has to be nominal if cost matrix " + "given!");
            }
            if (m_CostMatrix.size() != m_NumClasses) {
                throw new Exception("Cost matrix not compatible with data!");
            }
        }
        m_ClassPriors = new double[m_NumClasses];
        setPriors(data);
        m_MarginCounts = new double[k_MarginResolution + 1];
    }

    /**
     * Returns a copy of the confusion matrix.
     *
     * @return a copy of the confusion matrix as a two-dimensional array
     */
    public double[][] confusionMatrix() {

        double[][] newMatrix = new double[m_ConfusionMatrix.length][0];

        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            newMatrix[i] = new double[m_ConfusionMatrix[i].length];
            System.arraycopy(m_ConfusionMatrix[i], 0, newMatrix[i], 0, m_ConfusionMatrix[i].length);
        }
        return newMatrix;
    }

    /**
     * Performs a (stratified if class is nominal) cross-validation
     * for a classifier on a set of instances.
     *
     * @param classifier the classifier with any options set.
     * @param data the data on which the cross-validation is to be
     * performed
     * @param numFolds the number of folds for the cross-validation
     * @param random random number generator for randomization
     * @exception Exception if a classifier could not be generated
     * successfully or the class is not defined
     */
    public void crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random)
            throws Exception {

        // Make a copy of the data we can reorder
        data = new Instances(data);
        data.randomize(random);
        if (data.classAttribute().isNominal()) {
            data.stratify(numFolds);
        }
        // Do the folds
        for (int i = 0; i < numFolds; i++) {
            Instances train = data.trainCV(numFolds, i, random);
            setPriors(train);
            Classifier copiedClassifier = Classifier.makeCopy(classifier);
            copiedClassifier.buildClassifier(train);
            Instances test = data.testCV(numFolds, i);
            evaluateModel(copiedClassifier, test);
        }
        m_NumFolds = numFolds;
    }

    /**
     * Performs a (stratified if class is nominal) cross-validation
     * for a classifier on a set of instances.
     *
     * @param classifier a string naming the class of the classifier
     * @param data the data on which the cross-validation is to be
     * performed
     * @param numFolds the number of folds for the cross-validation
     * @param options the options to the classifier. Any options
     * @param random the random number generator for randomizing the data
     * accepted by the classifier will be removed from this array.
     * @exception Exception if a classifier could not be generated
     * successfully or the class is not defined
     */
    public void crossValidateModel(String classifierString, Instances data, int numFolds, String[] options,
            Random random) throws Exception {

        crossValidateModel(Classifier.forName(classifierString, options), data, numFolds, random);
    }

    /**
     * A test method for this class. Just extracts the first command line
     * argument as a classifier class name and calls evaluateModel.
     * @param args an array of command line arguments, the first of which
     * must be the class name of a classifier.
     */
    public static void main(String[] args) {

        try {
            if (args.length == 0) {
                throw new Exception("The first argument must be the class name" + " of a classifier");
            }
            String classifier = args[0];
            args[0] = "";
            //        System.out.println(evaluateModel(classifier, args));
        } catch (Exception ex) {
            ex.printStackTrace();
            System.err.println(ex.getMessage());
        }
    }

    /**
     * Evaluates a classifier with the options given in an array of
     * strings. <p>
     *
     * Valid options are: <p>
     *
     * -t name of training file <br>
     * Name of the file with the training data. (required) <p>
     *
     * -T name of test file <br>
     * Name of the file with the test data. If missing a cross-validation
     * is performed. <p>
     *
     * -c class index <br>
     * Index of the class attribute (1, 2, ...; default: last). <p>
     *
     * -x number of folds <br>
     * The number of folds for the cross-validation (default: 10). <p>
     *
     * -s random number seed <br>
     * Random number seed for the cross-validation (default: 1). <p>
     *
     * -m file with cost matrix <br>
     * The name of a file containing a cost matrix. <p>
     *
     * -l name of model input file <br>
     * Loads classifier from the given file. <p>
     *
     * -d name of model output file <br>
     * Saves classifier built from the training data into the given file. <p>
     *
     * -v <br>
     * Outputs no statistics for the training data. <p>
     *
     * -o <br>
     * Outputs statistics only, not the classifier. <p>
     *
     * -i <br>
     * Outputs detailed information-retrieval statistics per class. <p>
     *
     * -k <br>
     * Outputs information-theoretic statistics. <p>
     *
     * -p <br>
     * Outputs predictions for test instances (and nothing else). <p>
     *
     * -r <br>
     * Outputs cumulative margin distribution (and nothing else). <p>
     *
     * -g <br>
     * Only for classifiers that implement "Graphable." Outputs
     * the graph representation of the classifier (and nothing
     * else). <p>
     *
     * @param classifier machine learning classifier
     * @param options the array of string containing the options
     * @exception Exception if model could not be evaluated successfully
     * @return a string describing the results */
    public static String[] evaluateModel(Classifier classifier, String trainFileName, String objectOutputFileName)
            throws Exception {

        Instances train = null, tempTrain, test = null, template = null;
        int seed = 1, folds = 10, classIndex = -1;
        String testFileName, sourceClass, classIndexString, seedString, foldsString, objectInputFileName,
                attributeRangeString;
        boolean IRstatistics = false, noOutput = false, printClassifications = false, trainStatistics = true,
                printMargins = false, printComplexityStatistics = false, printGraph = false,
                classStatistics = false, printSource = false;
        StringBuffer text = new StringBuffer();
        BufferedReader trainReader = null, testReader = null;
        ObjectInputStream objectInputStream = null;
        CostMatrix costMatrix = null;
        StringBuffer schemeOptionsText = null;
        Range attributesToOutput = null;
        long trainTimeStart = 0, trainTimeElapsed = 0, testTimeStart = 0, testTimeElapsed = 0;

        try {

            String[] options = null;

            // Get basic options (options the same for all schemes)
            classIndexString = Utils.getOption('c', options);
            if (classIndexString.length() != 0) {
                classIndex = Integer.parseInt(classIndexString);
            }
            //  trainFileName = Utils.getOption('t', options);

            objectInputFileName = Utils.getOption('l', options);
            //   objectOutputFileName = Utils.getOption('d', options);
            testFileName = Utils.getOption('T', options);
            if (trainFileName.length() == 0) {
                if (objectInputFileName.length() == 0) {
                    throw new Exception("No training file and no object " + "input file given.");
                }
                if (testFileName.length() == 0) {
                    throw new Exception("No training file and no test " + "file given.");
                }
            } else if ((objectInputFileName.length() != 0)
                    && ((!(classifier instanceof UpdateableClassifier)) || (testFileName.length() == 0))) {
                throw new Exception("Classifier not incremental, or no " + "test file provided: can't "
                        + "use both train and model file.");
            }
            try {
                if (trainFileName.length() != 0) {
                    trainReader = new BufferedReader(new FileReader(trainFileName));
                }
                if (testFileName.length() != 0) {
                    testReader = new BufferedReader(new FileReader(testFileName));
                }
                if (objectInputFileName.length() != 0) {
                    InputStream is = new FileInputStream(objectInputFileName);
                    if (objectInputFileName.endsWith(".gz")) {
                        is = new GZIPInputStream(is);
                    }
                    objectInputStream = new ObjectInputStream(is);
                }
            } catch (Exception e) {
                throw new Exception("Can't open file " + e.getMessage() + '.');
            }
            if (testFileName.length() != 0) {
                template = test = new Instances(testReader, 1);
                if (classIndex != -1) {
                    test.setClassIndex(classIndex - 1);
                } else {
                    test.setClassIndex(test.numAttributes() - 1);
                }
                if (classIndex > test.numAttributes()) {
                    throw new Exception("Index of class attribute too large.");
                }
            }
            if (trainFileName.length() != 0) {
                if ((classifier instanceof UpdateableClassifier) && (testFileName.length() != 0)) {
                    train = new Instances(trainReader, 1);
                } else {
                    train = new Instances(trainReader);
                }
                template = train;
                if (classIndex != -1) {
                    train.setClassIndex(classIndex - 1);
                } else {
                    train.setClassIndex(train.numAttributes() - 1);
                }
                if ((testFileName.length() != 0) && !test.equalHeaders(train)) {
                    throw new IllegalArgumentException("Train and test file not compatible!");
                }
                if (classIndex > train.numAttributes()) {
                    throw new Exception("Index of class attribute too large.");
                }
                //train = new Instances(train);
            }
            if (template == null) {
                throw new Exception("No actual dataset provided to use as template");
            }
            seedString = Utils.getOption('s', options);
            if (seedString.length() != 0) {
                seed = Integer.parseInt(seedString);
            }
            foldsString = Utils.getOption('x', options);
            if (foldsString.length() != 0) {
                folds = Integer.parseInt(foldsString);
            }
            costMatrix = handleCostOption(Utils.getOption('m', options), template.numClasses());

            classStatistics = Utils.getFlag('i', options);
            noOutput = Utils.getFlag('o', options);
            trainStatistics = !Utils.getFlag('v', options);
            printComplexityStatistics = Utils.getFlag('k', options);
            printMargins = Utils.getFlag('r', options);
            printGraph = Utils.getFlag('g', options);
            sourceClass = Utils.getOption('z', options);
            printSource = (sourceClass.length() != 0);

            // Check -p option
            try {
                attributeRangeString = Utils.getOption('p', options);
            } catch (Exception e) {
                throw new Exception(e.getMessage() + "\nNOTE: the -p option has changed. "
                        + "It now expects a parameter specifying a range of attributes "
                        + "to list with the predictions. Use '-p 0' for none.");
            }
            if (attributeRangeString.length() != 0) {
                printClassifications = true;
                if (!attributeRangeString.equals("0")) {
                    attributesToOutput = new Range(attributeRangeString);
                }
            }

            // If a model file is given, we can't process
            // scheme-specific options
            if (objectInputFileName.length() != 0) {
                Utils.checkForRemainingOptions(options);
            } else {

                // Set options for classifier
                if (classifier instanceof OptionHandler) {
                    /* for (int i = 0; i < options.length; i++) {
                    if (options[i].length() != 0) {
                        if (schemeOptionsText == null) {
                            schemeOptionsText = new StringBuffer();
                        }
                        if (options[i].indexOf(' ') != -1) {
                            schemeOptionsText.append('"' + options[i] + "\" ");
                        } else {
                            schemeOptionsText.append(options[i] + " ");
                        }
                    }
                     }
                     */
                    ((OptionHandler) classifier).setOptions(options);
                }
            }
            Utils.checkForRemainingOptions(options);

        } catch (Exception e) {
            throw new Exception("\nWeka exception: " + e.getMessage() + makeOptionString(classifier));
        }

        // Setup up evaluation objects
        EvaluationInternal trainingEvaluation = new EvaluationInternal(new Instances(template, 0), costMatrix);
        EvaluationInternal testingEvaluation = new EvaluationInternal(new Instances(template, 0), costMatrix);

        if (objectInputFileName.length() != 0) {

            // Load classifier from file
            classifier = (Classifier) objectInputStream.readObject();
            objectInputStream.close();
        }

        // Build the classifier if no object file provided
        if ((classifier instanceof UpdateableClassifier) && (testFileName.length() != 0) && (costMatrix == null)
                && (trainFileName.length() != 0)) {

            // Build classifier incrementally
            trainingEvaluation.setPriors(train);
            testingEvaluation.setPriors(train);
            trainTimeStart = System.currentTimeMillis();
            if (objectInputFileName.length() == 0) {
                classifier.buildClassifier(train);
            }
            while (train.readInstance(trainReader)) {

                trainingEvaluation.updatePriors(train.instance(0));
                testingEvaluation.updatePriors(train.instance(0));
                ((UpdateableClassifier) classifier).updateClassifier(train.instance(0));
                train.delete(0);
            }
            trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
            trainReader.close();
        } else if (objectInputFileName.length() == 0) {

            // Build classifier in one go
            tempTrain = new Instances(train);
            trainingEvaluation.setPriors(tempTrain);
            testingEvaluation.setPriors(tempTrain);
            trainTimeStart = System.currentTimeMillis();
            classifier.buildClassifier(tempTrain);
            trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
        }

        // Save the classifier if an object output file is provided
        if (objectOutputFileName.length() != 0) {
            OutputStream os = new FileOutputStream(objectOutputFileName);
            if (objectOutputFileName.endsWith(".gz")) {
                os = new GZIPOutputStream(os);
            }
            ObjectOutputStream objectOutputStream = new ObjectOutputStream(os);
            objectOutputStream.writeObject(classifier);
            objectOutputStream.flush();
            objectOutputStream.close();
        }

        /*   // If classifier is drawable output string describing graph
           if ((classifier instanceof Drawable)
        && (printGraph)) {
        return ((Drawable) classifier).graph();
           }
            
           // Output the classifier as equivalent source
           if ((classifier instanceof Sourcable)
        && (printSource)) {
        return wekaStaticWrapper((Sourcable) classifier, sourceClass);
           }
            
           // Output test instance predictions only
           if (printClassifications) {
        return printClassifications(classifier, new Instances(template, 0),
                                    testFileName, classIndex, attributesToOutput);
           }
           */

        // Output model
        if (!(noOutput || printMargins)) {
            if (classifier instanceof OptionHandler) {
                if (schemeOptionsText != null) {
                    text.append("\nOptions: " + schemeOptionsText);
                    text.append("\n");
                }
            }
            text.append("\n" + classifier.toString() + "\n");
        }

        if (!printMargins && (costMatrix != null)) {
            text.append("\n=== Evaluation Cost Matrix ===\n\n").append(costMatrix.toString());
        }

        // Compute error estimate from training data
        if ((trainStatistics) && (trainFileName.length() != 0)) {

            if ((classifier instanceof UpdateableClassifier) && (testFileName.length() != 0)
                    && (costMatrix == null)) {

                // Classifier was trained incrementally, so we have to
                // reopen the training data in order to test on it.
                trainReader = new BufferedReader(new FileReader(trainFileName));

                // Incremental testing
                train = new Instances(trainReader, 1);
                if (classIndex != -1) {
                    train.setClassIndex(classIndex - 1);
                } else {
                    train.setClassIndex(train.numAttributes() - 1);
                }
                testTimeStart = System.currentTimeMillis();
                while (train.readInstance(trainReader)) {

                    trainingEvaluation.evaluateModelOnce((Classifier) classifier, train.instance(0));
                    train.delete(0);
                }
                testTimeElapsed = System.currentTimeMillis() - testTimeStart;
                trainReader.close();
            } else {
                testTimeStart = System.currentTimeMillis();
                trainingEvaluation.evaluateModel(classifier, train);
                testTimeElapsed = System.currentTimeMillis() - testTimeStart;
            }

            // Print the results of the training evaluation
            //  if (printMargins) {
            //      return trainingEvaluation.toCumulativeMarginDistributionString();
            //   } else {
            text.append("\nTime taken to build model: " + Utils.doubleToString(trainTimeElapsed / 1000.0, 2)
                    + " seconds");
            text.append("\nTime taken to test model on training data: "
                    + Utils.doubleToString(testTimeElapsed / 1000.0, 2) + " seconds");
            text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training" + " data ===\n",
                    printComplexityStatistics));
            if (template.classAttribute().isNominal()) {
                if (classStatistics) {
                    text.append("\n\n" + trainingEvaluation.toClassDetailsString());
                }
                text.append("\n\n" + trainingEvaluation.toMatrixString());
            }

            //  }
        }

        // Compute proper error estimates
        if (testFileName.length() != 0) {

            // Testing is on the supplied test data
            while (test.readInstance(testReader)) {

                testingEvaluation.evaluateModelOnce((Classifier) classifier, test.instance(0));
                test.delete(0);
            }
            testReader.close();

            text.append("\n\n"
                    + testingEvaluation.toSummaryString("=== Error on test data ===\n", printComplexityStatistics));
        } else if (trainFileName.length() != 0) {

            // Testing is via cross-validation on training data
            Random random = new Random(seed);
            testingEvaluation.crossValidateModel(classifier, train, folds, random);
            if (template.classAttribute().isNumeric()) {
                text.append("\n\n\n" + testingEvaluation.toSummaryString("=== Cross-validation ===\n",
                        printComplexityStatistics));
            } else {
                text.append("\n\n\n" + testingEvaluation
                        .toSummaryString("=== Stratified " + "cross-validation ===\n", printComplexityStatistics));
            }
        }
        if (template.classAttribute().isNominal()) {
            if (classStatistics) {
                text.append("\n\n" + testingEvaluation.toClassDetailsString());
            }
            text.append("\n\n" + testingEvaluation.toMatrixString());
        }

        String result = "\t" + Utils.doubleToString(trainingEvaluation.pctCorrect(), 12, 4) + " %";
        result += "       " + Utils.doubleToString(testingEvaluation.pctCorrect(), 12, 4) + " %";

        String[] returnString = { text.toString(), result };
        return returnString;
    }

    /**
     * Attempts to load a cost matrix.
     *
     * @param costFileName the filename of the cost matrix
     * @param numClasses the number of classes that should be in the cost matrix
     * (only used if the cost file is in old format).
     * @return a <code>CostMatrix</code> value, or null if costFileName is empty
     * @exception Exception if an error occurs.
     */
    protected static CostMatrix handleCostOption(String costFileName, int numClasses) throws Exception {

        if ((costFileName != null) && (costFileName.length() != 0)) {
            System.out.println("NOTE: The behaviour of the -m option has changed between WEKA 3.0"
                    + " and WEKA 3.1. -m now carries out cost-sensitive *evaluation*"
                    + " only. For cost-sensitive *prediction*, use one of the"
                    + " cost-sensitive metaschemes such as" + " weka.classifiers.meta.CostSensitiveClassifier or"
                    + " weka.classifiers.meta.MetaCost");

            Reader costReader = null;
            try {
                costReader = new BufferedReader(new FileReader(costFileName));
            } catch (Exception e) {
                throw new Exception("Can't open file " + e.getMessage() + '.');
            }
            try {
                // First try as a proper cost matrix format
                return new CostMatrix(costReader);
            } catch (Exception ex) {
                try {
                    // Now try as the poxy old format :-)
                    //System.err.println("Attempting to read old format cost file");
                    try {
                        costReader.close(); // Close the old one
                        costReader = new BufferedReader(new FileReader(costFileName));
                    } catch (Exception e) {
                        throw new Exception("Can't open file " + e.getMessage() + '.');
                    }
                    CostMatrix costMatrix = new CostMatrix(numClasses);
                    //System.err.println("Created default cost matrix");
                    costMatrix.readOldFormat(costReader);
                    return costMatrix;
                    //System.err.println("Read old format");
                } catch (Exception e2) {
                    // re-throw the original exception
                    //System.err.println("Re-throwing original exception");
                    throw ex;
                }
            }
        } else {
            return null;
        }
    }

    /**
     * Evaluates the classifier on a given set of instances. Note that
     * the data must have exactly the same format (e.g. order of
     * attributes) as the data used to train the classifier! Otherwise
     * the results will generally be meaningless.
     *
     * @param classifier machine learning classifier
     * @param data set of test instances for evaluation
     * @exception Exception if model could not be evaluated
     * successfully
     */
    public double[] evaluateModel(Classifier classifier, Instances data) throws Exception {

        double predictions[] = new double[data.numInstances()];

        for (int i = 0; i < data.numInstances(); i++) {
            predictions[i] = evaluateModelOnce((Classifier) classifier, data.instance(i));
        }
        return predictions;
    }

    /**
     * Evaluates the classifier on a single instance.
     *
     * @param classifier machine learning classifier
     * @param instance the test instance to be classified
     * @return the prediction made by the clasifier
     * @exception Exception if model could not be evaluated
     * successfully or the data contains string attributes
     */
    public double evaluateModelOnce(Classifier classifier, Instance instance) throws Exception {

        Instance classMissing = (Instance) instance.copy();
        double pred = 0;
        classMissing.setDataset(instance.dataset());
        classMissing.setClassMissing();
        if (m_ClassIsNominal) {
            double[] dist = classifier.distributionForInstance(classMissing);
            pred = Utils.maxIndex(dist);
            if (dist[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(dist, instance);
        } else {
            pred = classifier.classifyInstance(classMissing);
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the supplied distribution on a single instance.
     *
     * @param dist the supplied distribution
     * @param instance the test instance to be classified
     * @exception Exception if model could not be evaluated
     * successfully
     */
    public double evaluateModelOnce(double[] dist, Instance instance) throws Exception {
        double pred;
        if (m_ClassIsNominal) {
            pred = Utils.maxIndex(dist);
            if (dist[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(dist, instance);
        } else {
            pred = dist[0];
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the supplied prediction on a single instance.
     *
     * @param prediction the supplied prediction
     * @param instance the test instance to be classified
     * @exception Exception if model could not be evaluated
     * successfully
     */
    public void evaluateModelOnce(double prediction, Instance instance) throws Exception {

        if (m_ClassIsNominal) {
            updateStatsForClassifier(makeDistribution(prediction), instance);
        } else {
            updateStatsForPredictor(prediction, instance);
        }
    }

    /**
     * Wraps a static classifier in enough source to test using the weka
     * class libraries.
     *
     * @param classifier a Sourcable Classifier
     * @param className the name to give to the source code class
     * @return the source for a static classifier that can be tested with
     * weka libraries.
     */
    protected static String wekaStaticWrapper(Sourcable classifier, String className) throws Exception {

        //String className = "StaticClassifier";
        String staticClassifier = classifier.toSource(className);
        return "package weka.classifiers;\n" + "import weka.core.Attribute;\n" + "import weka.core.Instance;\n"
                + "import weka.core.Instances;\n" + "import weka.classifiers.Classifier;\n\n"
                + "public class WekaWrapper extends Classifier {\n\n"
                + "  public void buildClassifier(Instances i) throws Exception {\n" + "  }\n\n"
                + "  public double classifyInstance(Instance i) throws Exception {\n\n"
                + "    Object [] s = new Object [i.numAttributes()];\n"
                + "    for (int j = 0; j < s.length; j++) {\n" + "      if (!i.isMissing(j)) {\n"
                + "        if (i.attribute(j).type() == Attribute.NOMINAL) {\n"
                + "          s[j] = i.attribute(j).value((int) i.value(j));\n"
                + "        } else if (i.attribute(j).type() == Attribute.NUMERIC) {\n"
                + "          s[j] = new Double(i.value(j));\n" + "        }\n" + "      }\n" + "    }\n"
                + "    return " + className + ".classify(s);\n" + "  }\n\n" + "}\n\n" + staticClassifier; // The static classifer class
    }

    /**
     * Gets the number of test instances that had a known class value
     * (actually the sum of the weights of test instances with known
     * class value).
     *
     * @return the number of test instances with known class
     */
    public final double numInstances() {

        return m_WithClass;
    }

    /**
     * Gets the number of instances incorrectly classified (that is, for
     * which an incorrect prediction was made). (Actually the sum of the weights
     * of these instances)
     *
     * @return the number of incorrectly classified instances
     */
    public final double incorrect() {

        return m_Incorrect;
    }

    /**
     * Gets the percentage of instances incorrectly classified (that is, for
     * which an incorrect prediction was made).
     *
     * @return the percent of incorrectly classified instances
     * (between 0 and 100)
     */
    public final double pctIncorrect() {

        return 100 * m_Incorrect / m_WithClass;
    }

    /**
     * Gets the total cost, that is, the cost of each prediction times the
     * weight of the instance, summed over all instances.
     *
     * @return the total cost
     */
    public final double totalCost() {

        return m_TotalCost;
    }

    /**
     * Gets the average cost, that is, total cost of misclassifications
     * (incorrect plus unclassified) over the total number of instances.
     *
     * @return the average cost.
     */
    public final double avgCost() {

        return m_TotalCost / m_WithClass;
    }

    /**
     * Gets the number of instances correctly classified (that is, for
     * which a correct prediction was made). (Actually the sum of the weights
     * of these instances)
     *
     * @return the number of correctly classified instances
     */
    public final double correct() {

        return m_Correct;
    }

    /**
     * Gets the percentage of instances correctly classified (that is, for
     * which a correct prediction was made).
     *
     * @return the percent of correctly classified instances (between 0 and 100)
     */
    public final double pctCorrect() {

        return 100 * m_Correct / m_WithClass;
    }

    /**
     * Gets the number of instances not classified (that is, for
     * which no prediction was made by the classifier). (Actually the sum
     * of the weights of these instances)
     *
     * @return the number of unclassified instances
     */
    public final double unclassified() {

        return m_Unclassified;
    }

    /**
     * Gets the percentage of instances not classified (that is, for
     * which no prediction was made by the classifier).
     *
     * @return the percent of unclassified instances (between 0 and 100)
     */
    public final double pctUnclassified() {

        return 100 * m_Unclassified / m_WithClass;
    }

    /**
     * Returns the estimated error rate or the root mean squared error
     * (if the class is numeric). If a cost matrix was given this
     * error rate gives the average cost.
     *
     * @return the estimated error rate (between 0 and 1, or between 0 and
     * maximum cost)
     */
    public final double errorRate() {

        if (!m_ClassIsNominal) {
            return Math.sqrt(m_SumSqrErr / m_WithClass);
        }
        if (m_CostMatrix == null) {
            return m_Incorrect / m_WithClass;
        } else {
            return avgCost();
        }
    }

    /**
     * Returns value of kappa statistic if class is nominal.
     *
     * @return the value of the kappa statistic
     */
    public final double kappa() {

        double[] sumRows = new double[m_ConfusionMatrix.length];
        double[] sumColumns = new double[m_ConfusionMatrix.length];
        double sumOfWeights = 0;
        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            for (int j = 0; j < m_ConfusionMatrix.length; j++) {
                sumRows[i] += m_ConfusionMatrix[i][j];
                sumColumns[j] += m_ConfusionMatrix[i][j];
                sumOfWeights += m_ConfusionMatrix[i][j];
            }
        }
        double correct = 0, chanceAgreement = 0;
        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            chanceAgreement += (sumRows[i] * sumColumns[i]);
            correct += m_ConfusionMatrix[i][i];
        }
        chanceAgreement /= (sumOfWeights * sumOfWeights);
        correct /= sumOfWeights;

        if (chanceAgreement < 1) {
            return (correct - chanceAgreement) / (1 - chanceAgreement);
        } else {
            return 1;
        }
    }

    /**
     * Returns the correlation coefficient if the class is numeric.
     *
     * @return the correlation coefficient
     * @exception Exception if class is not numeric
     */
    public final double correlationCoefficient() throws Exception {

        if (m_ClassIsNominal) {
            throw new Exception("Can't compute correlation coefficient: " + "class is nominal!");
        }

        double correlation = 0;
        double varActual = m_SumSqrClass - m_SumClass * m_SumClass / m_WithClass;
        double varPredicted = m_SumSqrPredicted - m_SumPredicted * m_SumPredicted / m_WithClass;
        double varProd = m_SumClassPredicted - m_SumClass * m_SumPredicted / m_WithClass;

        if (Utils.smOrEq(varActual * varPredicted, 0.0)) {
            correlation = 0.0;
        } else {
            correlation = varProd / Math.sqrt(varActual * varPredicted);
        }

        return correlation;
    }

    /**
     * Returns the mean absolute error. Refers to the error of the
     * predicted values for numeric classes, and the error of the
     * predicted probability distribution for nominal classes.
     *
     * @return the mean absolute error
     */
    public final double meanAbsoluteError() {

        return m_SumAbsErr / m_WithClass;
    }

    /**
     * Returns the mean absolute error of the prior.
     *
     * @return the mean absolute error
     */
    public final double meanPriorAbsoluteError() {

        return m_SumPriorAbsErr / m_WithClass;
    }

    /**
     * Returns the relative absolute error.
     *
     * @return the relative absolute error
     * @exception Exception if it can't be computed
     */
    public final double relativeAbsoluteError() throws Exception {

        return 100 * meanAbsoluteError() / meanPriorAbsoluteError();
    }

    /**
     * Returns the root mean squared error.
     *
     * @return the root mean squared error
     */
    public final double rootMeanSquaredError() {

        return Math.sqrt(m_SumSqrErr / m_WithClass);
    }

    /**
     * Returns the root mean prior squared error.
     *
     * @return the root mean prior squared error
     */
    public final double rootMeanPriorSquaredError() {

        return Math.sqrt(m_SumPriorSqrErr / m_WithClass);
    }

    /**
     * Returns the root relative squared error if the class is numeric.
     *
     * @return the root relative squared error
     */
    public final double rootRelativeSquaredError() {

        return 100.0 * rootMeanSquaredError() / rootMeanPriorSquaredError();
    }

    /**
     * Calculate the entropy of the prior distribution
     *
     * @return the entropy of the prior distribution
     * @exception Exception if the class is not nominal
     */
    public final double priorEntropy() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute entropy of class prior: " + "class numeric!");
        }

        double entropy = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            entropy -= m_ClassPriors[i] / m_ClassPriorsSum * Utils.log2(m_ClassPriors[i] / m_ClassPriorsSum);
        }
        return entropy;
    }

    /**
     * Return the total Kononenko & Bratko Information score in bits
     *
     * @return the K&B information score
     * @exception Exception if the class is not nominal
     */
    public final double KBInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }
        return m_SumKBInfo;
    }

    /**
     * Return the Kononenko & Bratko Information score in bits per
     * instance.
     *
     * @return the K&B information score
     * @exception Exception if the class is not nominal
     */
    public final double KBMeanInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }
        return m_SumKBInfo / m_WithClass;
    }

    /**
     * Return the Kononenko & Bratko Relative Information score
     *
     * @return the K&B relative information score
     * @exception Exception if the class is not nominal
     */
    public final double KBRelativeInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }
        return 100.0 * KBInformation() / priorEntropy();
    }

    /**
     * Returns the total entropy for the null model
     *
     * @return the total null model entropy
     */
    public final double SFPriorEntropy() {

        return m_SumPriorEntropy;
    }

    /**
     * Returns the entropy per instance for the null model
     *
     * @return the null model entropy per instance
     */
    public final double SFMeanPriorEntropy() {

        return m_SumPriorEntropy / m_WithClass;
    }

    /**
     * Returns the total entropy for the scheme
     *
     * @return the total scheme entropy
     */
    public final double SFSchemeEntropy() {

        return m_SumSchemeEntropy;
    }

    /**
     * Returns the entropy per instance for the scheme
     *
     * @return the scheme entropy per instance
     */
    public final double SFMeanSchemeEntropy() {

        return m_SumSchemeEntropy / m_WithClass;
    }

    /**
     * Returns the total SF, which is the null model entropy minus
     * the scheme entropy.
     *
     * @return the total SF
     */
    public final double SFEntropyGain() {

        return m_SumPriorEntropy - m_SumSchemeEntropy;
    }

    /**
     * Returns the SF per instance, which is the null model entropy
     * minus the scheme entropy, per instance.
     *
     * @return the SF per instance
     */
    public final double SFMeanEntropyGain() {

        return (m_SumPriorEntropy - m_SumSchemeEntropy) / m_WithClass;
    }

    /**
     * Output the cumulative margin distribution as a string suitable
     * for input for gnuplot or similar package.
     *
     * @return the cumulative margin distribution
     * @exception Exception if the class attribute is nominal
     */
    public String toCumulativeMarginDistributionString() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Class must be nominal for margin distributions");
        }
        String result = "";
        double cumulativeCount = 0;
        double margin;
        for (int i = 0; i <= k_MarginResolution; i++) {
            if (m_MarginCounts[i] != 0) {
                cumulativeCount += m_MarginCounts[i];
                margin = (double) i * 2.0 / k_MarginResolution - 1.0;
                result = result + Utils.doubleToString(margin, 7, 3) + ' '
                        + Utils.doubleToString(cumulativeCount * 100 / m_WithClass, 7, 3) + '\n';
            } else if (i == 0) {
                result = Utils.doubleToString(-1.0, 7, 3) + ' ' + Utils.doubleToString(0, 7, 3) + '\n';
            }
        }
        return result;
    }

    /**
     * Calls toSummaryString() with no title and no complexity stats
     *
     * @return a summary description of the classifier evaluation
     */
    public String toSummaryString() {

        return toSummaryString("", false);
    }

    /**
     * Calls toSummaryString() with a default title.
     *
     * @param printComplexityStatistics if true, complexity statistics are
     * returned as well
     */
    public String toSummaryString(boolean printComplexityStatistics) {

        return toSummaryString("=== Summary ===\n", printComplexityStatistics);
    }

    /**
     * Outputs the performance statistics in summary form. Lists
     * number (and percentage) of instances classified correctly,
     * incorrectly and unclassified. Outputs the total number of
     * instances classified, and the number of instances (if any)
     * that had no class value provided.
     *
     * @param title the title for the statistics
     * @param printComplexityStatistics if true, complexity statistics are
     * returned as well
     * @return the summary as a String
     */
    public String toSummaryString(String title, boolean printComplexityStatistics) {

        double mae, mad = 0;
        StringBuffer text = new StringBuffer();

        text.append(title + "\n");
        try {
            if (m_WithClass > 0) {
                if (m_ClassIsNominal) {

                    text.append("Correctly Classified Instances     ");
                    text.append(Utils.doubleToString(correct(), 12, 4) + "     "
                            + Utils.doubleToString(pctCorrect(), 12, 4) + " %\n");
                    text.append("Incorrectly Classified Instances   ");
                    text.append(Utils.doubleToString(incorrect(), 12, 4) + "     "
                            + Utils.doubleToString(pctIncorrect(), 12, 4) + " %\n");
                    text.append("Kappa statistic                    ");
                    text.append(Utils.doubleToString(kappa(), 12, 4) + "\n");

                    if (m_CostMatrix != null) {
                        text.append("Total Cost                         ");
                        text.append(Utils.doubleToString(totalCost(), 12, 4) + "\n");
                        text.append("Average Cost                       ");
                        text.append(Utils.doubleToString(avgCost(), 12, 4) + "\n");
                    }
                    if (printComplexityStatistics) {
                        text.append("K&B Relative Info Score            ");
                        text.append(Utils.doubleToString(KBRelativeInformation(), 12, 4) + " %\n");
                        text.append("K&B Information Score              ");
                        text.append(Utils.doubleToString(KBInformation(), 12, 4) + " bits");
                        text.append(Utils.doubleToString(KBMeanInformation(), 12, 4) + " bits/instance\n");
                    }
                } else {
                    text.append("Correlation coefficient            ");
                    text.append(Utils.doubleToString(correlationCoefficient(), 12, 4) + "\n");
                }
                if (printComplexityStatistics) {
                    text.append("Class complexity | order 0         ");
                    text.append(Utils.doubleToString(SFPriorEntropy(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanPriorEntropy(), 12, 4) + " bits/instance\n");
                    text.append("Class complexity | scheme          ");
                    text.append(Utils.doubleToString(SFSchemeEntropy(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanSchemeEntropy(), 12, 4) + " bits/instance\n");
                    text.append("Complexity improvement     (Sf)    ");
                    text.append(Utils.doubleToString(SFEntropyGain(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanEntropyGain(), 12, 4) + " bits/instance\n");
                }

                text.append("Mean absolute error                ");
                text.append(Utils.doubleToString(meanAbsoluteError(), 12, 4) + "\n");
                text.append("Root mean squared error            ");
                text.append(Utils.doubleToString(rootMeanSquaredError(), 12, 4) + "\n");
                text.append("Relative absolute error            ");
                text.append(Utils.doubleToString(relativeAbsoluteError(), 12, 4) + " %\n");
                text.append("Root relative squared error        ");
                text.append(Utils.doubleToString(rootRelativeSquaredError(), 12, 4) + " %\n");
            }
            if (Utils.gr(unclassified(), 0)) {
                text.append("UnClassified Instances             ");
                text.append(Utils.doubleToString(unclassified(), 12, 4) + "     "
                        + Utils.doubleToString(pctUnclassified(), 12, 4) + " %\n");
            }
            text.append("Total Number of Instances          ");
            text.append(Utils.doubleToString(m_WithClass, 12, 4) + "\n");
            if (m_MissingClass > 0) {
                text.append("Ignored Class Unknown Instances            ");
                text.append(Utils.doubleToString(m_MissingClass, 12, 4) + "\n");
            }
        } catch (Exception ex) {
            // Should never occur since the class is known to be nominal
            // here
            System.err.println("Arggh - Must be a bug in Evaluation class");
        }

        return text.toString();
    }

    /**
     * Calls toMatrixString() with a default title.
     *
     * @return the confusion matrix as a string
     * @exception Exception if the class is numeric
     */
    public String toMatrixString() throws Exception {

        return toMatrixString("=== Confusion Matrix ===\n");
    }

    /**
     * Outputs the performance statistics as a classification confusion
     * matrix. For each class value, shows the distribution of
     * predicted class values.
     *
     * @param title the title for the confusion matrix
     * @return the confusion matrix as a String
     * @exception Exception if the class is numeric
     */
    public String toMatrixString(String title) throws Exception {

        StringBuffer text = new StringBuffer();
        char[] IDChars = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
                's', 't', 'u', 'v', 'w', 'x', 'y', 'z' };
        int IDWidth;
        boolean fractional = false;

        if (!m_ClassIsNominal) {
            throw new Exception("Evaluation: No confusion matrix possible!");
        }

        // Find the maximum value in the matrix
        // and check for fractional display requirement
        double maxval = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                double current = m_ConfusionMatrix[i][j];
                if (current < 0) {
                    current *= -10;
                }
                if (current > maxval) {
                    maxval = current;
                }
                double fract = current - Math.rint(current);
                if (!fractional && ((Math.log(fract) / Math.log(10)) >= -2)) {
                    fractional = true;
                }
            }
        }

        IDWidth = 1 + Math.max((int) (Math.log(maxval) / Math.log(10) + (fractional ? 3 : 0)),
                (int) (Math.log(m_NumClasses) / Math.log(IDChars.length)));
        text.append(title).append("\n");
        for (int i = 0; i < m_NumClasses; i++) {
            if (fractional) {
                text.append(" ").append(num2ShortID(i, IDChars, IDWidth - 3)).append("   ");
            } else {
                text.append(" ").append(num2ShortID(i, IDChars, IDWidth));
            }
        }
        text.append("   <-- classified as\n");
        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                text.append(" ")
                        .append(Utils.doubleToString(m_ConfusionMatrix[i][j], IDWidth, (fractional ? 2 : 0)));
            }
            text.append(" | ").append(num2ShortID(i, IDChars, IDWidth)).append(" = ").append(m_ClassNames[i])
                    .append("\n");
        }
        return text.toString();
    }

    public String toClassDetailsString() throws Exception {

        return toClassDetailsString("=== Detailed Accuracy By Class ===\n");
    }

    /**
     * Generates a breakdown of the accuracy for each class,
     * incorporating various information-retrieval statistics, such as
     * true/false positive rate, precision/recall/F-Measure.  Should be
     * useful for ROC curves, recall/precision curves.
     *
     * @param title the title to prepend the stats string with
     * @return the statistics presented as a string
     */
    public String toClassDetailsString(String title) throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Evaluation: No confusion matrix possible!");
        }
        StringBuffer text = new StringBuffer(
                title + "\nTP Rate   FP Rate" + "   Precision   Recall" + "  F-Measure   Class\n");
        for (int i = 0; i < m_NumClasses; i++) {
            text.append(Utils.doubleToString(truePositiveRate(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(falsePositiveRate(i), 7, 3)).append("    ");
            text.append(Utils.doubleToString(precision(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(recall(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(fMeasure(i), 7, 3)).append("    ");
            text.append(m_ClassNames[i]).append('\n');
        }
        return text.toString();
    }

    /**
     * Calculate the number of true positives with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified positives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double numTruePositives(int classIndex) {

        double correct = 0;
        for (int j = 0; j < m_NumClasses; j++) {
            if (j == classIndex) {
                correct += m_ConfusionMatrix[classIndex][j];
            }
        }
        return correct;
    }

    /**
     * Calculate the true positive rate with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified positives
     * ------------------------------
     *       total positives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double truePositiveRate(int classIndex) {

        double correct = 0, total = 0;
        for (int j = 0; j < m_NumClasses; j++) {
            if (j == classIndex) {
                correct += m_ConfusionMatrix[classIndex][j];
            }
            total += m_ConfusionMatrix[classIndex][j];
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculate the number of true negatives with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified negatives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double numTrueNegatives(int classIndex) {

        double correct = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        correct += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return correct;
    }

    /**
     * Calculate the true negative rate with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified negatives
     * ------------------------------
     *       total negatives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double trueNegativeRate(int classIndex) {

        double correct = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        correct += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculate number of false positives with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * incorrectly classified negatives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double numFalsePositives(int classIndex) {

        double incorrect = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j == classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return incorrect;
    }

    /**
     * Calculate the false positive rate with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * incorrectly classified negatives
     * --------------------------------
     *        total negatives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double falsePositiveRate(int classIndex) {

        double incorrect = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j == classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return incorrect / total;
    }

    /**
     * Calculate number of false negatives with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * incorrectly classified positives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double numFalseNegatives(int classIndex) {

        double incorrect = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return incorrect;
    }

    /**
     * Calculate the false negative rate with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * incorrectly classified positives
     * --------------------------------
     *        total positives
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double falseNegativeRate(int classIndex) {

        double incorrect = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return incorrect / total;
    }

    /**
     * Calculate the recall with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified positives
     * ------------------------------
     *       total positives
     * </pre><p>
     * (Which is also the same as the truePositiveRate.)
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the recall
     */
    public double recall(int classIndex) {

        return truePositiveRate(classIndex);
    }

    /**
     * Calculate the precision with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * correctly classified positives
     * ------------------------------
     *  total predicted as positive
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the precision
     */
    public double precision(int classIndex) {

        double correct = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                correct += m_ConfusionMatrix[i][classIndex];
            }
            total += m_ConfusionMatrix[i][classIndex];
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculate the F-Measure with respect to a particular class.
     * This is defined as<p>
     * <pre>
     * 2 * recall * precision
     * ----------------------
     *   recall + precision
     * </pre>
     *
     * @param classIndex the index of the class to consider as "positive"
     * @return the F-Measure
     */
    public double fMeasure(int classIndex) {

        double precision = precision(classIndex);
        double recall = recall(classIndex);
        if ((precision + recall) == 0) {
            return 0;
        }
        return 2 * precision * recall / (precision + recall);
    }

    /**
     * Sets the class prior probabilities
     *
     * @param train the training instances used to determine
     * the prior probabilities
     * @exception Exception if the class attribute of the instances is not
     * set
     */
    public void setPriors(Instances train) throws Exception {

        if (!m_ClassIsNominal) {

            m_NumTrainClassVals = 0;
            m_TrainClassVals = null;
            m_TrainClassWeights = null;
            m_PriorErrorEstimator = null;
            m_ErrorEstimator = null;

            for (int i = 0; i < train.numInstances(); i++) {
                Instance currentInst = train.instance(i);
                if (!currentInst.classIsMissing()) {
                    addNumericTrainClass(currentInst.classValue(), currentInst.weight());
                }
            }

        } else {
            for (int i = 0; i < m_NumClasses; i++) {
                m_ClassPriors[i] = 1;
            }
            m_ClassPriorsSum = m_NumClasses;
            for (int i = 0; i < train.numInstances(); i++) {
                if (!train.instance(i).classIsMissing()) {
                    m_ClassPriors[(int) train.instance(i).classValue()] += train.instance(i).weight();
                    m_ClassPriorsSum += train.instance(i).weight();
                }
            }
        }
    }

    /**
     * Updates the class prior probabilities (when incrementally
     * training)
     *
     * @param instance the new training instance seen
     * @exception Exception if the class of the instance is not
     * set
     */
    public void updatePriors(Instance instance) throws Exception {
        if (!instance.classIsMissing()) {
            if (!m_ClassIsNominal) {
                if (!instance.classIsMissing()) {
                    addNumericTrainClass(instance.classValue(), instance.weight());
                }
            } else {
                m_ClassPriors[(int) instance.classValue()] += instance.weight();
                m_ClassPriorsSum += instance.weight();
            }
        }
    }

    /**
     * Tests whether the current evaluation object is equal to another
     * evaluation object
     *
     * @param obj the object to compare against
     * @return true if the two objects are equal
     */
    public boolean equals(Object obj) {

        if ((obj == null) || !(obj.getClass().equals(this.getClass()))) {
            return false;
        }
        EvaluationInternal cmp = (EvaluationInternal) obj;
        if (m_ClassIsNominal != cmp.m_ClassIsNominal) {
            return false;
        }
        if (m_NumClasses != cmp.m_NumClasses) {
            return false;
        }

        if (m_Incorrect != cmp.m_Incorrect) {
            return false;
        }
        if (m_Correct != cmp.m_Correct) {
            return false;
        }
        if (m_Unclassified != cmp.m_Unclassified) {
            return false;
        }
        if (m_MissingClass != cmp.m_MissingClass) {
            return false;
        }
        if (m_WithClass != cmp.m_WithClass) {
            return false;
        }

        if (m_SumErr != cmp.m_SumErr) {
            return false;
        }
        if (m_SumAbsErr != cmp.m_SumAbsErr) {
            return false;
        }
        if (m_SumSqrErr != cmp.m_SumSqrErr) {
            return false;
        }
        if (m_SumClass != cmp.m_SumClass) {
            return false;
        }
        if (m_SumSqrClass != cmp.m_SumSqrClass) {
            return false;
        }
        if (m_SumPredicted != cmp.m_SumPredicted) {
            return false;
        }
        if (m_SumSqrPredicted != cmp.m_SumSqrPredicted) {
            return false;
        }
        if (m_SumClassPredicted != cmp.m_SumClassPredicted) {
            return false;
        }

        if (m_ClassIsNominal) {
            for (int i = 0; i < m_NumClasses; i++) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (m_ConfusionMatrix[i][j] != cmp.m_ConfusionMatrix[i][j]) {
                        return false;
                    }
                }
            }
        }

        return true;
    }

    /**
     * Prints the predictions for the given dataset into a String variable.
     */
    protected static String printClassifications(Classifier classifier, Instances train, String testFileName,
            int classIndex, Range attributesToOutput) throws Exception {

        StringBuffer text = new StringBuffer();
        if (testFileName.length() != 0) {
            BufferedReader testReader = null;
            try {
                testReader = new BufferedReader(new FileReader(testFileName));
            } catch (Exception e) {
                throw new Exception("Can't open file " + e.getMessage() + '.');
            }
            Instances test = new Instances(testReader, 1);
            if (classIndex != -1) {
                test.setClassIndex(classIndex - 1);
            } else {
                test.setClassIndex(test.numAttributes() - 1);
            }
            int i = 0;
            while (test.readInstance(testReader)) {
                Instance instance = test.instance(0);
                Instance withMissing = (Instance) instance.copy();
                withMissing.setDataset(test);
                double predValue = ((Classifier) classifier).classifyInstance(withMissing);
                if (test.classAttribute().isNumeric()) {
                    if (Instance.isMissingValue(predValue)) {
                        text.append(i + " missing ");
                    } else {
                        text.append(i + " " + predValue + " ");
                    }
                    if (instance.classIsMissing()) {
                        text.append("missing");
                    } else {
                        text.append(instance.classValue());
                    }
                    text.append(" " + attributeValuesString(withMissing, attributesToOutput) + "\n");
                } else {
                    if (Instance.isMissingValue(predValue)) {
                        text.append(i + " missing ");
                    } else {
                        text.append(i + " " + test.classAttribute().value((int) predValue) + " ");
                    }
                    if (Instance.isMissingValue(predValue)) {
                        text.append("missing ");
                    } else {
                        text.append(classifier.distributionForInstance(withMissing)[(int) predValue] + " ");
                    }
                    text.append(instance.toString(instance.classIndex()) + " "
                            + attributeValuesString(withMissing, attributesToOutput) + "\n");
                }
                test.delete(0);
                i++;
            }
            testReader.close();
        }
        return text.toString();
    }

    /**
     * Builds a string listing the attribute values in a specified range of indices,
     * separated by commas and enclosed in brackets.
     *
     * @param instance the instance to print the values from
     * @param attributes the range of the attributes to list
     * @return a string listing values of the attributes in the range
     */
    protected static String attributeValuesString(Instance instance, Range attRange) {
        StringBuffer text = new StringBuffer();
        if (attRange != null) {
            boolean firstOutput = true;
            attRange.setUpper(instance.numAttributes() - 1);
            for (int i = 0; i < instance.numAttributes(); i++) {
                if (attRange.isInRange(i) && i != instance.classIndex()) {
                    if (firstOutput) {
                        text.append("(");
                    } else {
                        text.append(",");
                    }
                    text.append(instance.toString(i));
                    firstOutput = false;
                }
            }
            if (!firstOutput) {
                text.append(")");
            }
        }
        return text.toString();
    }

    /**
     * Make up the help string giving all the command line options
     *
     * @param classifier the classifier to include options for
     * @return a string detailing the valid command line options
     */
    protected static String makeOptionString(Classifier classifier) {

        StringBuffer optionsText = new StringBuffer("");

        // General options
        optionsText.append("\n\nGeneral options:\n\n");
        optionsText.append("-t <name of training file>\n");
        optionsText.append("\tSets training file.\n");
        optionsText.append("-T <name of test file>\n");
        optionsText.append("\tSets test file. If missing, a cross-validation");
        optionsText.append(" will be performed on the training data.\n");
        optionsText.append("-c <class index>\n");
        optionsText.append("\tSets index of class attribute (default: last).\n");
        optionsText.append("-x <number of folds>\n");
        optionsText.append("\tSets number of folds for cross-validation (default: 10).\n");
        optionsText.append("-s <random number seed>\n");
        optionsText.append("\tSets random number seed for cross-validation (default: 1).\n");
        optionsText.append("-m <name of file with cost matrix>\n");
        optionsText.append("\tSets file with cost matrix.\n");
        optionsText.append("-l <name of input file>\n");
        optionsText.append("\tSets model input file.\n");
        optionsText.append("-d <name of output file>\n");
        optionsText.append("\tSets model output file.\n");
        optionsText.append("-v\n");
        optionsText.append("\tOutputs no statistics for training data.\n");
        optionsText.append("-o\n");
        optionsText.append("\tOutputs statistics only, not the classifier.\n");
        optionsText.append("-i\n");
        optionsText.append("\tOutputs detailed information-retrieval");
        optionsText.append(" statistics for each class.\n");
        optionsText.append("-k\n");
        optionsText.append("\tOutputs information-theoretic statistics.\n");
        optionsText.append("-p <attribute range>\n");
        optionsText.append(
                "\tOnly outputs predictions for test instances, along with attributes " + "(0 for none).\n");
        optionsText.append("-r\n");
        optionsText.append("\tOnly outputs cumulative margin distribution.\n");
        if (classifier instanceof Sourcable) {
            optionsText.append("-z <class name>\n");
            optionsText.append("\tOnly outputs the source representation"
                    + " of the classifier, giving it the supplied" + " name.\n");
        }
        if (classifier instanceof Drawable) {
            optionsText.append("-g\n");
            optionsText.append("\tOnly outputs the graph representation" + " of the classifier.\n");
        }

        // Get scheme-specific options
        if (classifier instanceof OptionHandler) {
            optionsText.append("\nOptions specific to " + classifier.getClass().getName() + ":\n\n");
            Enumeration enu = ((OptionHandler) classifier).listOptions();
            while (enu.hasMoreElements()) {
                Option option = (Option) enu.nextElement();
                optionsText.append(option.synopsis() + '\n');
                optionsText.append(option.description() + "\n");
            }
        }
        return optionsText.toString();
    }

    /**
     * Method for generating indices for the confusion matrix.
     *
     * @param num integer to format
     * @return the formatted integer as a string
     */
    protected String num2ShortID(int num, char[] IDChars, int IDWidth) {

        char ID[] = new char[IDWidth];
        int i;

        for (i = IDWidth - 1; i >= 0; i--) {
            ID[i] = IDChars[num % IDChars.length];
            num = num / IDChars.length - 1;
            if (num < 0) {
                break;
            }
        }
        for (i--; i >= 0; i--) {
            ID[i] = ' ';
        }

        return new String(ID);
    }

    /**
     * Convert a single prediction into a probability distribution
     * with all zero probabilities except the predicted value which
     * has probability 1.0;
     *
     * @param predictedClass the index of the predicted class
     * @return the probability distribution
     */
    protected double[] makeDistribution(double predictedClass) {

        double[] result = new double[m_NumClasses];
        if (Instance.isMissingValue(predictedClass)) {
            return result;
        }
        if (m_ClassIsNominal) {
            result[(int) predictedClass] = 1.0;
        } else {
            result[0] = predictedClass;
        }
        return result;
    }

    /**
     * Updates all the statistics about a classifiers performance for
     * the current test instance.
     *
     * @param predictedDistribution the probabilities assigned to
     * each class
     * @param instance the instance to be classified
     * @exception Exception if the class of the instance is not
     * set
     */
    protected void updateStatsForClassifier(double[] predictedDistribution, Instance instance) throws Exception {

        int actualClass = (int) instance.classValue();
        double costFactor = 1;

        if (!instance.classIsMissing()) {
            updateMargins(predictedDistribution, actualClass, instance.weight());

            // Determine the predicted class (doesn't detect multiple
            // classifications)
            int predictedClass = -1;
            double bestProb = 0.0;
            for (int i = 0; i < m_NumClasses; i++) {
                if (predictedDistribution[i] > bestProb) {
                    predictedClass = i;
                    bestProb = predictedDistribution[i];
                }
            }

            m_WithClass += instance.weight();

            // Determine misclassification cost
            if (m_CostMatrix != null) {
                if (predictedClass < 0) {
                    // For missing predictions, we assume the worst possible cost.
                    // This is pretty harsh.
                    // Perhaps we could take the negative of the cost of a correct
                    // prediction (-m_CostMatrix.getElement(actualClass,actualClass)),
                    // although often this will be zero
                    m_TotalCost += instance.weight() * m_CostMatrix.getMaxCost(actualClass);
                } else {
                    m_TotalCost += instance.weight() * m_CostMatrix.getElement(actualClass, predictedClass);
                }
            }

            // Update counts when no class was predicted
            if (predictedClass < 0) {
                m_Unclassified += instance.weight();
                return;
            }

            double predictedProb = Math.max(MIN_SF_PROB, predictedDistribution[actualClass]);
            double priorProb = Math.max(MIN_SF_PROB, m_ClassPriors[actualClass] / m_ClassPriorsSum);
            if (predictedProb >= priorProb) {
                m_SumKBInfo += (Utils.log2(predictedProb) - Utils.log2(priorProb)) * instance.weight();
            } else {
                m_SumKBInfo -= (Utils.log2(1.0 - predictedProb) - Utils.log2(1.0 - priorProb)) * instance.weight();
            }

            m_SumSchemeEntropy -= Utils.log2(predictedProb) * instance.weight();
            m_SumPriorEntropy -= Utils.log2(priorProb) * instance.weight();

            updateNumericScores(predictedDistribution, makeDistribution(instance.classValue()), instance.weight());

            // Update other stats
            m_ConfusionMatrix[actualClass][predictedClass] += instance.weight();
            if (predictedClass != actualClass) {
                m_Incorrect += instance.weight();
            } else {
                m_Correct += instance.weight();
            }
        } else {
            m_MissingClass += instance.weight();
        }
    }

    /**
     * Updates all the statistics about a predictors performance for
     * the current test instance.
     *
     * @param predictedValue the numeric value the classifier predicts
     * @param instance the instance to be classified
     * @exception Exception if the class of the instance is not
     * set
     */
    protected void updateStatsForPredictor(double predictedValue, Instance instance) throws Exception {

        if (!instance.classIsMissing()) {

            // Update stats
            m_WithClass += instance.weight();
            if (Instance.isMissingValue(predictedValue)) {
                m_Unclassified += instance.weight();
                return;
            }
            m_SumClass += instance.weight() * instance.classValue();
            m_SumSqrClass += instance.weight() * instance.classValue() * instance.classValue();
            m_SumClassPredicted += instance.weight() * instance.classValue() * predictedValue;
            m_SumPredicted += instance.weight() * predictedValue;
            m_SumSqrPredicted += instance.weight() * predictedValue * predictedValue;

            if (m_ErrorEstimator == null) {
                setNumericPriorsFromBuffer();
            }
            double predictedProb = Math.max(m_ErrorEstimator.getProbability(predictedValue - instance.classValue()),
                    MIN_SF_PROB);
            double priorProb = Math.max(m_PriorErrorEstimator.getProbability(instance.classValue()), MIN_SF_PROB);

            m_SumSchemeEntropy -= Utils.log2(predictedProb) * instance.weight();
            m_SumPriorEntropy -= Utils.log2(priorProb) * instance.weight();
            m_ErrorEstimator.addValue(predictedValue - instance.classValue(), instance.weight());

            updateNumericScores(makeDistribution(predictedValue), makeDistribution(instance.classValue()),
                    instance.weight());

        } else {
            m_MissingClass += instance.weight();
        }
    }

    /**
     * Update the cumulative record of classification margins
     *
     * @param predictedDistribution the probability distribution predicted for
     * the current instance
     * @param actualClass the index of the actual instance class
     * @param weight the weight assigned to the instance
     */
    protected void updateMargins(double[] predictedDistribution, int actualClass, double weight) {

        double probActual = predictedDistribution[actualClass];
        double probNext = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            if ((i != actualClass) && (predictedDistribution[i] > probNext)) {
                probNext = predictedDistribution[i];
            }
        }

        double margin = probActual - probNext;
        int bin = (int) ((margin + 1.0) / 2.0 * k_MarginResolution);
        m_MarginCounts[bin] += weight;
    }

    /**
     * Update the numeric accuracy measures. For numeric classes, the
     * accuracy is between the actual and predicted class values. For
     * nominal classes, the accuracy is between the actual and
     * predicted class probabilities.
     *
     * @param predicted the predicted values
     * @param actual the actual value
     * @param weight the weight associated with this prediction
     */
    protected void updateNumericScores(double[] predicted, double[] actual, double weight) {

        double diff;
        double sumErr = 0, sumAbsErr = 0, sumSqrErr = 0;
        double sumPriorAbsErr = 0, sumPriorSqrErr = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            diff = predicted[i] - actual[i];
            sumErr += diff;
            sumAbsErr += Math.abs(diff);
            sumSqrErr += diff * diff;
            diff = (m_ClassPriors[i] / m_ClassPriorsSum) - actual[i];
            sumPriorAbsErr += Math.abs(diff);
            sumPriorSqrErr += diff * diff;
        }
        m_SumErr += weight * sumErr / m_NumClasses;
        m_SumAbsErr += weight * sumAbsErr / m_NumClasses;
        m_SumSqrErr += weight * sumSqrErr / m_NumClasses;
        m_SumPriorAbsErr += weight * sumPriorAbsErr / m_NumClasses;
        m_SumPriorSqrErr += weight * sumPriorSqrErr / m_NumClasses;
    }

    /**
     * Adds a numeric (non-missing) training class value and weight to
     * the buffer of stored values.
     *
     * @param classValue the class value
     * @param weight the instance weight
     */
    protected void addNumericTrainClass(double classValue, double weight) {

        if (m_TrainClassVals == null) {
            m_TrainClassVals = new double[100];
            m_TrainClassWeights = new double[100];
        }
        if (m_NumTrainClassVals == m_TrainClassVals.length) {
            double[] temp = new double[m_TrainClassVals.length * 2];
            System.arraycopy(m_TrainClassVals, 0, temp, 0, m_TrainClassVals.length);
            m_TrainClassVals = temp;

            temp = new double[m_TrainClassWeights.length * 2];
            System.arraycopy(m_TrainClassWeights, 0, temp, 0, m_TrainClassWeights.length);
            m_TrainClassWeights = temp;
        }
        m_TrainClassVals[m_NumTrainClassVals] = classValue;
        m_TrainClassWeights[m_NumTrainClassVals] = weight;
        m_NumTrainClassVals++;
    }

    /**
     * Sets up the priors for numeric class attributes from the
     * training class values that have been seen so far.
     */
    protected void setNumericPriorsFromBuffer() {

        double numPrecision = 0.01; // Default value
        if (m_NumTrainClassVals > 1) {
            double[] temp = new double[m_NumTrainClassVals];
            System.arraycopy(m_TrainClassVals, 0, temp, 0, m_NumTrainClassVals);
            int[] index = Utils.sort(temp);
            double lastVal = temp[index[0]];
            double currentVal, deltaSum = 0;
            int distinct = 0;
            for (int i = 1; i < temp.length; i++) {
                double current = temp[index[i]];
                if (current != lastVal) {
                    deltaSum += current - lastVal;
                    lastVal = current;
                    distinct++;
                }
            }
            if (distinct > 0) {
                numPrecision = deltaSum / distinct;
            }
        }
        m_PriorErrorEstimator = new KernelEstimator(numPrecision);
        m_ErrorEstimator = new KernelEstimator(numPrecision);
        m_ClassPriors[0] = m_ClassPriorsSum = 0;
        for (int i = 0; i < m_NumTrainClassVals; i++) {
            m_ClassPriors[0] += m_TrainClassVals[i] * m_TrainClassWeights[i];
            m_ClassPriorsSum += m_TrainClassWeights[i];
            m_PriorErrorEstimator.addValue(m_TrainClassVals[i], m_TrainClassWeights[i]);
        }
    }

}