gamlss.distributions.ST1.java Source code

Java tutorial

Introduction

Here is the source code for gamlss.distributions.ST1.java

Source

/*
  Copyright 2012 by Dr. Vlasios Voudouris and ABM Analytics Ltd
  Licensed under the Academic Free License version 3.0
  See the file "LICENSE" for more information
*/
package gamlss.distributions;

import gamlss.distributions.GT.IntegratingFunction;
import gamlss.distributions.GT.UniRootObjFunction;
import gamlss.utilities.Controls;
import gamlss.utilities.MakeLinkFunction;
import gamlss.utilities.TDistr;

import java.util.Hashtable;

import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.integration.BaseAbstractUnivariateIntegrator;
import org.apache.commons.math3.analysis.integration.LegendreGaussIntegrator;
import org.apache.commons.math3.analysis.integration.UnivariateIntegrator;
import org.apache.commons.math3.analysis.solvers.BrentSolver;
import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation;
import org.apache.commons.math3.util.FastMath;

/**
 * @author Dr. Vlasios Voudouris, Daniil Kiose, 
 * Prof. Mikis Stasinopoulos and Dr Robert Rigby.
 */
public class ST1 implements GAMLSSFamilyDistribution {

    /** Number of distribution parameters. */
    private final int numDistPar = 4;
    /** Hashtable to hold vectors of distribution 
     * parameters values (mu, sigma, ...). */
    private Hashtable<Integer, ArrayRealVector> distributionParameters = new Hashtable<Integer, ArrayRealVector>();
    /** Hashtable to hold types of link functions 
     * for the distribution parameters. */
    private Hashtable<Integer, Integer> distributionParameterLink = new Hashtable<Integer, Integer>();
    /** vector of values of mu distribution parameter. */
    private ArrayRealVector muV;
    /** vector of values of sigma distribution parameter. */
    private ArrayRealVector sigmaV;
    /** vector of values of nu distribution parameter. */
    private ArrayRealVector nuV;
    /** vector of values of tau distribution parameter. */
    private ArrayRealVector tauV;
    /** Array of first derrivative values dl/dmu. */
    private double[] dldm;
    /** Array of first derrivative values dl/dsigma. */
    private double[] dlds;
    /** Array of first derrivative values dl/dnu. */
    private double[] dldn;
    /** Array of first derrivative values dl/dtau. */
    private double[] dldt;
    /** Temporary vector for interim operations. */
    private ArrayRealVector tempV;
    /** Temporary array for interim operations. */
    private double[] z;
    /** Temporary array for interim operations. */
    private double[] w;
    /** Temporary array for interim operations. */
    private double[] lam;
    /** Temporary int for interim operations. */
    private int size;
    /** Object of t distribution class. */
    private TDistr tdDist;
    /** Object of Normal distribution class. */
    private NormalDistribution noDist;
    /** Object of LegendreGaussIntegrator class. */
    private LegendreGaussIntegrator integrator;
    /** Object of IntegratingFunction class. */
    private IntegratingFunction function;
    /** Temporary array for interim operations. */
    private double[] interval;
    /** object of uni-root objective function. */
    private UniRootObjFunction uniRootObj;
    /** Object of UnivariateSolver class. */
    private UnivariateSolver uniRootSolver;

    /** This is the Skew t (Azzalini type 1)  distribution
     *  with default link (muLink="identity",sigmaLink="log",
     *   nuLink="log", tauLink="log"). */
    public ST1() {

        this(DistributionSettings.IDENTITY, DistributionSettings.LOG, DistributionSettings.IDENTITY,
                DistributionSettings.LOG);
    }

    /** This is the Skew t (Azzalini type 1) distribution with
     *  supplied link function for each of the distribution parameters.
     * @param muLink - link function for mu distribution parameter
     * @param sigmaLink - link function for sigma distribution parameter
     * @param nuLink - link function for nu distribution parameter
     * @param tauLink - link function for tau distribution parameter
     */
    public ST1(final int muLink, final int sigmaLink, final int nuLink, final int tauLink) {

        distributionParameterLink.put(DistributionSettings.MU,
                MakeLinkFunction.checkLink(DistributionSettings.ST1, muLink));
        distributionParameterLink.put(DistributionSettings.SIGMA,
                MakeLinkFunction.checkLink(DistributionSettings.ST1, sigmaLink));
        distributionParameterLink.put(DistributionSettings.NU,
                MakeLinkFunction.checkLink(DistributionSettings.ST1, nuLink));
        distributionParameterLink.put(DistributionSettings.TAU,
                MakeLinkFunction.checkLink(DistributionSettings.ST1, tauLink));

        tdDist = new TDistr();
        noDist = new NormalDistribution();
        integrator = new LegendreGaussIntegrator(2, LegendreGaussIntegrator.DEFAULT_RELATIVE_ACCURACY,
                LegendreGaussIntegrator.DEFAULT_ABSOLUTE_ACCURACY);
        function = new IntegratingFunction();
        interval = new double[2];
        uniRootSolver = new BrentSolver(1.0e-12, 1.0e-8);
        uniRootObj = new UniRootObjFunction();
    }

    /** Initialises the distribution parameters.
     * @param y - response variable */
    public final void initialiseDistributionParameters(final ArrayRealVector y) {

        distributionParameters.put(DistributionSettings.MU, setMuInitial(y));
        distributionParameters.put(DistributionSettings.SIGMA, setSigmaInitial(y));
        distributionParameters.put(DistributionSettings.NU, setNuInitial(y));
        distributionParameters.put(DistributionSettings.TAU, setTauInitial(y));
    }

    /**  Calculate and set initial value of mu, by assumption 
     * these values lie between observed data and the trend line.
     * @param y - vector of values of response variable
     * @return vector of initial values of mu
     */
    private ArrayRealVector setMuInitial(final ArrayRealVector y) {
        //mu.initial =  expression(mu <- (y+mean(y))/2)
        size = y.getDimension();
        double[] out = new double[size];
        Mean mean = new Mean();
        double yMean = mean.evaluate(y.getDataRef());
        for (int i = 0; i < size; i++) {
            out[i] = (y.getEntry(i) + yMean) / 2;
        }
        return new ArrayRealVector(out, false);
    }

    /** Calculate and set initial value of sigma.
     * @param y - vector of values of response variable
     * @return vector of initial values of sigma
     */
    private ArrayRealVector setSigmaInitial(final ArrayRealVector y) {
        //sigma.initial = expression(sigma <- rep(sd(y)/4, length(y))),
        tempV = new ArrayRealVector(y.getDimension());
        final double out = new StandardDeviation().evaluate(y.getDataRef());
        tempV.set(out / 4);
        return tempV;
    }

    /** Calculate and set initial value of nu.
     * @param y - vector of values of response variable
     * @return vector of initial values of nu
     */
    private ArrayRealVector setNuInitial(final ArrayRealVector y) {
        //nu.initial = expression(nu <- rep(0.1, length(y))),
        tempV = new ArrayRealVector(y.getDimension());
        tempV.set(0.1);
        return tempV;
    }

    /** Calculates initial value of tau.
     * @param y - vector of values of response variable
     * @return vector of initial values of tau
     */
    private ArrayRealVector setTauInitial(final ArrayRealVector y) {
        //tau.initial = expression(tau <-rep(5, length(y)))
        tempV = new ArrayRealVector(y.getDimension());
        tempV.set(5.0);
        return tempV;
    }

    /** Calculates a first derivative of the likelihood 
        * function in respect to supplied distribution parameter.
        * @param whichDistParameter - distribution parameter
        * @param y - vector of values of likelihood function
        * @return vector of first derivative of the likelihood 
        */
    public final ArrayRealVector firstDerivative(final int whichDistParameter, final ArrayRealVector y) {
        setInterimArrays(y, whichDistParameter);
        tempV = null;
        switch (whichDistParameter) {
        case DistributionSettings.MU:
            tempV = dldm(y);
            break;
        case DistributionSettings.SIGMA:
            tempV = dlds(y);
            break;
        case DistributionSettings.NU:
            tempV = dldn(y);
            break;
        case DistributionSettings.TAU:
            tempV = dldt(y);
            break;
        default:
            System.err.println("Requested first order " + "derivative does not exist");
            break;
        }
        return tempV;
    }

    /**
     * Set z, w, lam arrays.
     * @param y - response variable
     */
    private void setInterimArrays(final ArrayRealVector y, final int whichDistParameter) {
        muV = distributionParameters.get(DistributionSettings.MU);
        sigmaV = distributionParameters.get(DistributionSettings.SIGMA);
        nuV = distributionParameters.get(DistributionSettings.NU);
        tauV = distributionParameters.get(DistributionSettings.TAU);

        size = y.getDimension();
        z = new double[size];
        lam = new double[size];
        w = new double[size];
        for (int i = 0; i < size; i++) {

            //z <- (y-mu)/sigma
            z[i] = (y.getEntry(i) - muV.getEntry(i)) / sigmaV.getEntry(i);

            //w <- nu*z
            w[i] = nuV.getEntry(i) * z[i];

            if (whichDistParameter != DistributionSettings.NU) {
                //lam <- ifelse(tau < 1000000, (tau+1)/(tau+(z^2)),1)
                if (tauV.getEntry(i) < 1000000) {

                    lam[i] = (tauV.getEntry(i) + 1) / (tauV.getEntry(i) + (z[i] * z[i]));
                } else {

                    lam[i] = 1.0;
                }
            }
        }
    }

    /**  First derivative dldm = dl/dmu, where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of first derivative dldm = dl/dmu
     */
    public final ArrayRealVector dldm(final ArrayRealVector y) {

        dldm = new double[size];
        for (int i = 0; i < size; i++) {

            //dldm <- -(dt(w,df=tau)/pt(w,df=tau))*nu/sigma + lam*z/sigma
            tdDist.setDegreesOfFreedom(tauV.getEntry(i));
            dldm[i] = -(tdDist.density(w[i]) / tdDist.cumulativeProbability(w[i])) * nuV.getEntry(i)
                    / sigmaV.getEntry(i) + lam[i] * z[i] / sigmaV.getEntry(i);
        }
        z = null;
        w = null;
        lam = null;
        return new ArrayRealVector(dldm, false);
    }

    /** First derivative dlds = dl/dsigma, where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of First derivative dlds = dl/dsigma
     */
    public final ArrayRealVector dlds(final ArrayRealVector y) {

        dlds = new double[size];
        for (int i = 0; i < size; i++) {

            //dldd <- -(dt(w,df=tau)/pt(w,df=tau))*nu*z/sigma 
            //+ ((lam*(z^2))-1)/sigma
            tdDist.setDegreesOfFreedom(tauV.getEntry(i));
            dlds[i] = -(tdDist.density(w[i]) / tdDist.cumulativeProbability(w[i])) * nuV.getEntry(i) * z[i]
                    / sigmaV.getEntry(i) + ((lam[i] * (z[i] * z[i])) - 1) / sigmaV.getEntry(i);
        }
        z = null;
        w = null;
        lam = null;
        return new ArrayRealVector(dlds, false);
    }

    /** First derivative dldn = dl/dnu, where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of First derivative dldn = dl/dnu
     */
    public final ArrayRealVector dldn(final ArrayRealVector y) {

        dldn = new double[size];
        double temp = 0;
        for (int i = 0; i < size; i++) {

            //dwdv <- w/nu
            //dldv <- (dt(w,df=tau)/pt(w,df=tau))*dwdv
            tdDist.setDegreesOfFreedom(tauV.getEntry(i));
            dldn[i] = (tdDist.density(w[i]) / tdDist.cumulativeProbability(w[i])) * w[i] / nuV.getEntry(i);
        }
        z = null;
        w = null;
        lam = null;
        return new ArrayRealVector(dldn, false);
    }

    /** First derivative dldtau = dl/dtau, where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of First derivative dldtau = dl/dtau
     */
    public final ArrayRealVector dldt(final ArrayRealVector y) {

        dldt = new double[size];
        for (int i = 0; i < size; i++) {

            //j <- (pt(w,df=tau+0.001,log.p=TRUE)
            //-pt(w,df=tau-0.001,log.p=TRUE))/0.002
            tdDist.setDegreesOfFreedom(tauV.getEntry(i) + 0.001);
            final double part1 = FastMath.log(tdDist.cumulativeProbability(w[i]));

            tdDist.setDegreesOfFreedom(tauV.getEntry(i) - 0.001);
            final double part2 = FastMath.log(tdDist.cumulativeProbability(w[i]));

            final double j = (part1 - part2) / 0.002;

            //dldt <- j + (digamma((tau+1)/2)-digamma(tau/2)
            //-(1/tau)-log(1+(z^2)/tau)+lam*(z^2)/tau)/2
            dldt[i] = j + (Gamma.digamma((tauV.getEntry(i) + 1) / 2) - Gamma.digamma(tauV.getEntry(i) / 2)
                    - (1 / tauV.getEntry(i)) - FastMath.log(1 + (z[i] * z[i]) / tauV.getEntry(i))
                    + lam[i] * (z[i] * z[i]) / tauV.getEntry(i)) / 2.0;
        }
        z = null;
        w = null;
        lam = null;
        return new ArrayRealVector(dldt, false);
    }

    /** Calculates a second derivative of the likelihood 
        * function in respect to supplied distribution parameter.
        * @param whichDistParameter - distribution parameter
        * @param y - vector of values of likelihood function 
        * @return vector of second derivative of the likelihood
        */
    public final ArrayRealVector secondDerivative(final int whichDistParameter, final ArrayRealVector y) {
        tempV = null;
        switch (whichDistParameter) {
        case DistributionSettings.MU:
            tempV = d2ldm2(y);
            break;
        case DistributionSettings.SIGMA:
            tempV = d2lds2(y);
            break;
        case DistributionSettings.NU:
            tempV = d2ldn2(y);
            break;
        case DistributionSettings.TAU:
            tempV = d2ldt2(y);
            break;
        default:
            System.err.println("Requested second order " + "derivative does not exist");
            break;
        }
        return tempV;
    }

    /** Second derivative d2ldm2= (d^2l)/(dmu^2),
     *  where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of second derivative d2ldm2= (d^2l)/(dmu^2)
     */
    private ArrayRealVector d2ldm2(final ArrayRealVector y) {

        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldm2 <- -dldm*dldm
            out[i] = -dldm[i] * dldm[i];
            if (out[i] > -1e-15) {
                out[i] = -1e-15;
            }
        }
        muV = null;
        sigmaV = null;
        nuV = null;
        tauV = null;
        return new ArrayRealVector(out, false);
    }

    /** Second derivative d2lds2= (d^2l)/(dsigma^2), 
     * where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of second derivative d2lds2= (d^2l)/(dsigma^2)
     */
    private ArrayRealVector d2lds2(final ArrayRealVector y) {

        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldd2 <- -dldd*dldd
            out[i] = -dlds[i] * dlds[i];
            if (out[i] > -1e-15) {
                out[i] = -1e-15;
            }
        }
        muV = null;
        sigmaV = null;
        nuV = null;
        tauV = null;
        return new ArrayRealVector(out, false);

    }

    /** Second derivative d2ldn2= (d^2l)/(dnu^2), 
     * where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of second derivative d2ldn2= (d^2l)/(dnu^2)
     */
    private ArrayRealVector d2ldn2(final ArrayRealVector y) {

        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldv2 <- -dldv*dldv
            out[i] = -dldn[i] * dldn[i];

            //d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
            if (out[i] > -1e-15) {
                out[i] = -1e-15;
            }
        }
        muV = null;
        sigmaV = null;
        nuV = null;
        tauV = null;
        return new ArrayRealVector(out, false);
    }

    /** Second derivative d2ldt2= (d^2l)/(dtau^2),
     * where l - log-likelihood function.
     * @param y - vector of values of response variable
     * @return  a vector of second derivative d2ldt2= (d^2l)/(dtau^2)
     */
    private ArrayRealVector d2ldt2(final ArrayRealVector y) {

        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldt2 <- -dldt*dldt
            out[i] = -dldt[i] * dldt[i];

            //d2ldt2 <- ifelse(d2ldt2 < -1e-15, d2ldt2,-1e-15)
            if (out[i] > -1e-15) {
                out[i] = -1e-15;
            }
        }
        muV = null;
        sigmaV = null;
        nuV = null;
        tauV = null;
        return new ArrayRealVector(out, false);
    }

    /** Calculates a second cross derivative of the likelihood 
     * function in respect to supplied distribution parameters.
     * @param whichDistParameter1 - first distribution parameter
     * @param whichDistParameter2 - second distribution parameter
     * @param y - vector of values of likelihood function 
     * @return  vector of second cross derivative of the likelihood
     */
    public final ArrayRealVector secondCrossDerivative(final int whichDistParameter1, final int whichDistParameter2,
            final ArrayRealVector y) {
        tempV = null;
        if (whichDistParameter1 == DistributionSettings.MU) {
            switch (whichDistParameter2) {
            case DistributionSettings.SIGMA:
                tempV = d2ldmds(y);
                break;
            case DistributionSettings.NU:
                tempV = d2ldmdn(y);
                break;
            case DistributionSettings.TAU:
                tempV = d2ldmdt(y);
                break;
            default:
                System.err.println("Second derivative does not exist");
                return null;
            }
        }
        if (whichDistParameter1 == DistributionSettings.SIGMA) {
            switch (whichDistParameter2) {
            case DistributionSettings.NU:
                tempV = d2ldsdn(y);
                break;
            case DistributionSettings.TAU:
                tempV = d2ldsdt(y);
                break;
            default:
                System.err.println("Second derivative does not exist");
                return null;
            }
        }
        if (whichDistParameter1 == DistributionSettings.NU) {
            switch (whichDistParameter2) {
            case DistributionSettings.TAU:
                tempV = d2ldndt(y);
                break;
            default:
                System.err.println("Second derivative does not exist");
                return null;
            }

        }
        return tempV;
    }

    /** Second cross derivative of likelihood function in 
        * respect to mu and sigma (d2ldmdd = d2l/dmu*dsigma).
        * @param y - vector of values of response variable
        * @return  a vector of Second cross derivative
        */
    private ArrayRealVector d2ldmds(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            // d2ldmdd <- -(dldm*dldd)
            out[i] = -dldm[i] * dlds[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Second cross derivative of likelihood function
      * in respect to mu and nu (d2ldmdd = d2l/dmu*dnu).
     * @param y - vector of values of response variable
     * @return  a vector of Second cross derivative
     */
    private ArrayRealVector d2ldmdn(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldmdv <- -(dldm*dldv)
            out[i] = -dldm[i] * dldn[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Second cross derivative of likelihood function 
     * in respect to mu and tau (d2ldmdd = d2l/dmu*dtau).
     * @param y - vector of values of response variable
     * @return  a vector of Second cross derivative
     */
    private ArrayRealVector d2ldmdt(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldmdt <- -(dldm*dldt)
            out[i] = -dldm[i] * dldt[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Second cross derivative of likelihood function 
     * in respect to sigma and nu (d2ldmdd = d2l/dsigma*dnu).
     * @param y - vector of values of response variable
     * @return  a vector of Second cross derivative
     */
    private ArrayRealVector d2ldsdn(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldddv <- -(dldd*dldv)
            out[i] = -dlds[i] * dldn[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Second cross derivative of likelihood function 
     * in respect to sigma and tau (d2ldmdd = d2l/dsigma*dtau).
     * @param y - vector of values of response variable
     * @return  a vector of Second cross derivative
     */
    private ArrayRealVector d2ldsdt(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldddt <- -(dldd*dldt) 
            out[i] = -dlds[i] * dldt[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Second cross derivative of likelihood function 
     * in respect to nu and tau (d2ldmdd = d2l/dnu*dtau).
     * @param y - vector of values of response variable
     * @return  a vector of Second cross derivative
     */
    private ArrayRealVector d2ldndt(final ArrayRealVector y) {
        double[] out = new double[size];
        for (int i = 0; i < size; i++) {
            //d2ldvdt <- -(dldv*dldt)
            out[i] = -dldn[i] * dldt[i];
        }
        return new ArrayRealVector(out, false);
    }

    /** Computes the global Deviance Increament.
     * @param y - vector of response variable values
     * @return vector of global Deviance Increament values 
     */
    public final ArrayRealVector globalDevianceIncreament(final ArrayRealVector y) {
        //G.dev.incr  = function(y,mu,sigma,nu,tau,...)  
        //-2*dST3(y,mu,sigma,nu,tau,log=TRUE),
        size = y.getDimension();
        double[] out = new double[size];

        double[] muArr = distributionParameters.get(DistributionSettings.MU).getDataRef();
        double[] sigmaArr = distributionParameters.get(DistributionSettings.SIGMA).getDataRef();
        double[] nuArr = distributionParameters.get(DistributionSettings.NU).getDataRef();
        double[] tauArr = distributionParameters.get(DistributionSettings.TAU).getDataRef();

        for (int i = 0; i < size; i++) {

            out[i] = (-2)
                    * dST1(y.getEntry(i), muArr[i], sigmaArr[i], nuArr[i], tauArr[i], Controls.LOG_LIKELIHOOD);
        }
        return new ArrayRealVector(out, false);
    }

    /** Computes the probability density function (PDF) of this 
     * distribution evaluated at the specified point x.
     * @param x - value of response variable
     * @param mu - value of mu distribution parameter
     * @param sigma - value of sigma distribution parameter
     * @param nu - value of nu distribution parameter
     * @param tau - value of tau distribution parameter
     * @param isLog  - logical, whether to take log of the function or not
     * @return value of probability density function
     */
    public final double dST1(final double x, final double mu, final double sigma, final double nu, final double tau,
            final boolean isLog) {

        // {  if (any(sigma <= 0))stop(paste("sigma must be positive",))
        if (sigma <= 0) {
            System.err.println("sigma must be positive");
            return -1.0;
        }

        //if (any(tau <= 0))  stop(paste("tau must be positive", "\n", ""))
        if (tau <= 0) {
            System.err.println("tau must be positive");
            return -1.0;
        }

        double out = 0;

        //z <- (x-mu)/sigma
        final double z = (x - mu) / sigma;

        //w <- nu*z
        final double w = nu * z;

        //loglik <- ifelse(tau<1000000, loglik1, loglik2)
        if (tau < 1000000) {

            //loglik1 <- pt(w,df=tau,log.p=TRUE) 
            //+ dt(z,df=tau,log =TRUE) + log(2) - log(sigma)
            tdDist.setDegreesOfFreedom(tau);
            out = FastMath.log(tdDist.cumulativeProbability(w)) + FastMath.log(tdDist.density(z))
                    + FastMath.log(2.0) - FastMath.log(sigma);
        } else {

            //loglik2 <- pNO(w,mu=0,sigma=1,log.p=TRUE) 
            //+ dNO(z,mu=0,sigma=1,log =TRUE) + log(2) - log(sigma)
            out = FastMath.log(noDist.cumulativeProbability(w)) + FastMath.log(noDist.density(z))
                    + FastMath.log(2.0) - FastMath.log(sigma);
        }

        //if(log==FALSE) ft  <- exp(loglik) else ft <- loglik 
        if (!isLog) {
            out = FastMath.exp(out);
        }
        return out;
    }

    /**
     * dST1(x) launches dST1(x, mu, sigma, nu, isLog) 
     * with deafult mu = 0, sigma = 1, nu = 0, tau = 2, isLof=false.
     * @param x - value of response variable 
     * @return value of probability density function 
     */
    //dST1 <- function(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
    public final double dST1(final double x) {
        return dST1(x, 0.0, 1.0, 0.0, 2.0, false);
    }

    /** Computes the cumulative distribution 
     * function P(X <= q) for a random variable X .
     * whose values are distributed according to this distribution
     * @param q - value of quantile
     * @param mu - value of mu distribution parameter
     * @param sigma - value of sigma distribution parameter
     * @param nu - value of nu distribution parameter 
     * @param tau - value of tau distribution parameter 
     * @param lowerTail - logical, if TRUE (default), probabilities
     *  are P[X <= x] otherwise, P[X > x].
     * @param isLog - logical, if TRUE, probabilities p are given as log(p)
     * @return value of cumulative probability function values P(X <= q)
     */
    public final double pST1(final double q, final double mu, final double sigma, final double nu, final double tau,
            final boolean lowerTail, final boolean isLog) {

        // {  if (any(sigma <= 0))stop(paste("sigma must be positive",))
        if (sigma <= 0) {
            System.err.println("sigma must be positive");
            return -1.0;
        }

        //if (any(tau < 0))  stop(paste("tau must be positive", "\n", ""))
        if (tau < 0) {
            System.err.println("tau must be positive");
            return -1.0;
        }

        //cdf[i] <- integrate(function(x) 
        //dST1(x, mu = 0, sigma = 1, nu = nu[i], tau = tau[i]),
        //-Inf, (q[i]-mu[i])/sigma[i] )$value
        function.setNu(nu);
        function.setTau(tau);
        double out = integrator.integrate(Integer.MAX_VALUE, function, Double.NEGATIVE_INFINITY, (q - mu) / sigma);

        //if(lower.tail==TRUE) cdf  <- cdf else  cdf <- 1-cdf
        if (!lowerTail) {
            if (isLog) {
                out = FastMath.log(1 - out);
            } else {
                out = 1 - out;
            }
        } else if (isLog) {
            //if(log.p==FALSE) cdf  <- cdf else  cdf <- log(cdf)
            out = FastMath.log(out);
        }
        return out;
    }

    /**
      * Inner class is a shell for objective function to
      * find the root of the function.
      *
      */
    class IntegratingFunction implements UnivariateFunction {

        /** nu distribution parameter. */
        private double nu;
        /** tau distribution parameter. */
        private double tau;

        /**
         * This function is used to integrate the objectivefunction function.
         * @param x - income value to determine zero of the function
         * @return value of the function
         */
        public double value(final double x) {
            return dST1(x, 0.0, 1.0, nu, tau, false);
        }

        /**
         * Set nu distribution parameter.
         * @param nu - distribution parameter
         */
        public void setNu(final double nu) {
            this.nu = nu;
        }

        /**
         * Set tau distribution parameter.
         * @param tau - distribution parameter
         */
        public void setTau(final double tau) {
            this.tau = tau;
        }
    }

    /**
     * pST1(q) launches pST1(q, mu, sigma, nu,  tau, 
     * lowerTail, isLog) with deafult mu = 0, sigma = 1, 
     * nu = 0, tau = 2.
     * lowerTail = true, isLog = false.
     * @param q - quantile
     * @return cumulative probability function value P(X <= q)
     */
    //  pST1 <- function(q, mu = 0, sigma = 1, nu = 0, 
    //tau = 2, lower.tail = TRUE, log.p = FALSE)
    public final double pST1(final double q) {
        return pST1(q, 0.0, 1.0, 0.0, 2.0, true, false);
    }

    /** Computes the quantile (inverse cumulative probability)
     *  function  of this distribution.
    * @param p - value of cumulative probability
    * @param mu -  value of mu distribution parameters
    * @param sigma -  value of sigma distribution parameters
    * @param nu -  value of nu distribution parameters 
    * @param tau -  value of tau distribution parameters
    * @param lowerTail - logical; if TRUE (default), probabilities 
    * are P[X <= x] otherwise, P[X > x]
    * @param isLog - logical; if TRUE, probabilities p are given as log(p).
    * @return value of quantile function
    */
    public final double qST1(final double p, final double mu, final double sigma, final double nu, final double tau,
            final boolean lowerTail, final boolean isLog) {

        // {  if (any(sigma <= 0))stop(paste("sigma must be positive",))
        if (sigma <= 0) {
            System.err.println("sigma must be positive");
            return -1.0;
        }

        //if (log.p==TRUE) p <- exp(p) else p <- p
        double out = 0;
        double temp = p;
        // if (log.p==TRUE) p <- exp(p) else p <- p
        if (isLog) {
            temp = FastMath.exp(temp);
        }
        if (temp <= 0 || temp >= 1) {
            System.err.println("p must be between 0 and 1");
        }
        if (!lowerTail) {
            temp = 1 - temp;
        }

        //if (h(mu[i])<p[i])
        if (h(mu, mu, sigma, nu, tau, true, false) < temp) {

            //interval <- c(mu[i], mu[i]+sigma[i])
            interval[0] = mu;
            interval[1] = mu + sigma;

            //j <-2
            int j = 2;

            //while (h(interval[2]) < p[i])
            while (h(interval[1], mu, sigma, nu, tau, true, false) < temp) {
                //interval[2]<- mu[i]+j*sigma[i]
                interval[1] = mu + j * sigma;

                //j<-j+1
                j++;
            }
        } else {

            //interval <-  c(mu[i]-sigma[i], mu[i])
            interval[0] = mu - sigma;
            interval[1] = mu;

            //j <-2
            int j = 2;

            //while (h(interval[1]) > p[i])
            while (h(interval[0], mu, sigma, nu, tau, true, false) > temp) {

                //interval[1]<- mu[i]-j*sigma[i]
                interval[0] = mu - j * sigma;

                //j<-j+1 
                j++;
            }
        }

        //q[i] <- uniroot(h1, interval)$root
        uniRootObj.setParameters(out, mu, sigma, nu, tau, temp);
        if (interval[0] < interval[1]) {
            out = uniRootSolver.solve(1000, uniRootObj, interval[0], interval[1]);
        } else {
            out = uniRootSolver.solve(1000, uniRootObj, interval[1], interval[0]);
        }
        return out;
    }

    /**
     * Supportive function for qST1, calss pST1.
     * @param in - income value
    * @param mu -  vector of mu distribution parameters values
    * @param sigma -  vector of sigma distribution parameters values
    * @param nu -  vector of nu distribution parameters values
    * @param tau -  vector of tau distribution parameters values
    * @param lowerTail - logical; if TRUE (default), probabilities 
    * are P[X <= x] otherwise, P[X > x]
    * @param isLog - logical; if TRUE, probabilities p are given as log(p).
     * @return value of cumulative probability function
     */
    public final double h(final double in, final double mu, final double sigma, final double nu, final double tau,
            final boolean lowerTail, final boolean isLog) {

        return pST1(in, mu, sigma, nu, tau, lowerTail, isLog);
    }

    /**
       * Inner class is a shell for objective function to
       * find the root of the function.
       *
       */
    class UniRootObjFunction implements UnivariateFunction {

        /** mu distribution parameter. */
        private double mu;
        /** sigma distribution parameter. */
        private double sigma;
        /** nu distribution parameter. */
        private double nu;
        /** tau distribution parameter. */
        private double tau;
        /** income value. */
        private double q;
        /** value of cumulative probability. */
        private double p;

        /**
         * This function is used to integrate the objectivefunction function.
         * @param x - income value to determine zero of the function
         * @return value of the function
         */
        public double value(final double x) {
            return h1(q, mu, sigma, nu, tau, true, false, p);
        }

        /**
         * Set required paeameters.
         * @param q - income value       
         * @param mu -  value of mu distribution parameters
         * @param sigma -  value of sigma distribution parameters
         * @param nu -  value of nu distribution parameters 
         * @param tau -  value of tau distribution parameters
         * @param p - value of cumulative probability
         */
        public void setParameters(final double q, final double mu, final double sigma, final double nu,
                final double tau, final double p) {
            this.mu = mu;
            this.sigma = sigma;
            this.nu = nu;
            this.tau = tau;
            this.q = q;
            this.p = p;
        }
    }

    /**
     * Supportive function for qGTs, calss pGT.
     * @param in - income value
    * @param mu -  vector of mu distribution parameters values
    * @param sigma -  vector of sigma distribution parameters values
    * @param nu -  vector of nu distribution parameters values
    * @param tau -  vector of tau distribution parameters values
    * @param lowerTail - logical; if TRUE (default), probabilities 
    * are P[X <= x] otherwise, P[X > x]
    * @param isLog - logical; if TRUE, probabilities p are given as log(p).
    * @param p - value of cumulative probability
     * @return value of cumulative probability function
     */
    public final double h1(final double in, final double mu, final double sigma, final double nu, final double tau,
            final boolean lowerTail, final boolean isLog, final double p) {

        return (pST1(in, mu, sigma, nu, tau, lowerTail, isLog) - p);
    }

    /**
     * qST1(p) launches qST1(p, mu, sigma, nu,  tau, lowerTail, isLog)
     *  with deafult mmu = 0, sigma = 1, nu = 0, tau = 2.
     * lowerTail = true, isLog = false.
     * @param p - value of cumulative probability 
     * @return quantile
     */
    //qST1 <-  function(p, mu = 0, sigma = 1, nu = 0, 
    //tau = 2, lower.tail = TRUE, log.p = FALSE)
    public final double qST1(final double p) {
        return qST1(p, 0.0, 1.0, 0.0, 2.0, true, false);
    }

    /** Generates a random sample from this distribution.
     * @param mu -  vector of mu distribution parameters values
     * @param sigma -  vector of sigma distribution parameters values
     * @param nu -  vector of nu distribution parameters values
     * @param tau -  vector of tau distribution parameters values
     * @param uDist -  object of UniformRealDistribution class;
     * @return random sample vector
     */
    public final double rST1(final double mu, final double sigma, final double nu, final double tau,
            final UniformRealDistribution uDist) {

        // {if (any(sigma <= 0))stop(paste("sigma must be positive"))
        if (sigma <= 0) {
            System.err.println("sigma must be positive");
            return -1.0;
        }
        //r <- qST1(p,mu=mu,sigma=sigma,nu=nu,tau=tau)
        return qST1(uDist.sample(), mu, sigma, nu, tau, true, false);
    }

    /**
    * rST1(uDist) launches rST1(mu, sigma, nu,  tau, uDist) 
    * with deafult mu=0, sigma=1, nu=0, tau=2.
       * @param uDist -  object of UniformRealDistribution class;
     * @return random sample value
    */
    //rST1 <- function(n, mu=0, sigma=1, nu=0, tau=2)
    public final double rST1(final UniformRealDistribution uDist) {
        return rST1(0.0, 1.0, 0.0, 2.0, uDist);
    }

    /**
    * Checks whether the mu distribution parameter is valid.
    * @param y - vector of response variavbles
    * @return - boolean
    */
    public final boolean isYvalid(final ArrayRealVector y) {
        return true;
    }

    /** Checks whether entries of ArrayRealVectors 
     * of distribution parameters are valid.
    * @param whichDistParameter - distribution parameter
      @return Hashtable of booleans
     */
    public final boolean areDistributionParametersValid(final int whichDistParameter) {
        boolean tempB = false;
        switch (whichDistParameter) {
        case DistributionSettings.MU:
            tempB = isMuValid(distributionParameters.get(DistributionSettings.MU));
            break;
        case DistributionSettings.SIGMA:
            tempB = isSigmaValid(distributionParameters.get(DistributionSettings.SIGMA));
            break;
        case DistributionSettings.NU:
            tempB = isNuValid(distributionParameters.get(DistributionSettings.NU));
            break;
        case DistributionSettings.TAU:
            tempB = isTauValid(distributionParameters.get(DistributionSettings.TAU));
            break;
        default:
            System.out.println("The specific distribution parameter" + " does not exist for this distribution");
        }
        return tempB;
    }

    /**
    * Checks whether the mu distribution parameter is valid.
    * @param mu - vector of mu (mean) values
    * @return - boolean
    */
    private boolean isMuValid(final ArrayRealVector mu) {
        //mu.valid = function(mu) TRUE,
        return true;
    }

    /**
     * Checks whether the sigma distribution parameter is valid.
     * @param sigma - vector of sigma (standard deviation) values
     * @return - - boolean
     */
    private boolean isSigmaValid(final ArrayRealVector sigma) {
        return sigma.getMinValue() > 0;
    }

    /**
     * Checks whether the nu distribution parameter is valid.
     * @param nu - vector of nu values
     * @return - - boolean
     */
    private boolean isNuValid(final ArrayRealVector nu) {
        //nu.valid = function(nu) TRUE ,
        return true;
    }

    /**
     * Checks whether the tau distribution parameter is valid.
     * @param tau - vector of nu values
     * @return - - boolean
     */
    private boolean isTauValid(final ArrayRealVector tau) {
        return tau.getMinValue() > 0;
    }

    /**
     * Get number of distribution parameters.
     * @return number of distribution parameters
     */
    public final int getNumberOfDistribtionParameters() {
        return numDistPar;
    }

    /**
     * Get type of distributuion (Continuous, Discrete or Mixed).
     * @return type of distributuion
     */
    public final int getTypeOfDistribution() {
        return DistributionSettings.CONTINUOUS;
    }

    /**
     * Get distribution name.
     * @return distribution name.
     */
    public final int getFamilyOfDistribution() {
        return DistributionSettings.ST1;
    }

    /**
     * Set distribution parsameters.
     * @param whichDistParameter - the fitting distribution parameter
     * @param fvDistributionParameter - vector of values of 
     * fitting distribution parameter
     */
    public final void setDistributionParameter(final int whichDistParameter,
            final ArrayRealVector fvDistributionParameter) {
        this.distributionParameters.put(whichDistParameter, fvDistributionParameter);
    }

    /**
     * Get distribution parsameters.
     * @param whichDistParameter - distribution parameter
     * @return - vector of distribution parameter values
     */
    public final ArrayRealVector getDistributionParameter(final int whichDistParameter) {
        return this.distributionParameters.get(whichDistParameter);
    }

    /** Get the link function type of the current distribution parameter.
     * @param whichDistParameter - distribution parameter
     * @return link function type
     */
    public final int getDistributionParameterLink(final int whichDistParameter) {
        return distributionParameterLink.get(whichDistParameter);
    }
}