org.apache.commons.math3.analysis.integration.LegendreGaussIntegrator.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math3.analysis.integration.LegendreGaussIntegrator.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.integration;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * Implements the <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html">
 * Legendre-Gauss</a> quadrature formula.
 * <p>
 * Legendre-Gauss integrators are efficient integrators that can
 * accurately integrate functions with few function evaluations. A
 * Legendre-Gauss integrator using an n-points quadrature formula can
 * integrate 2n-1 degree polynomials exactly.
 * </p>
 * <p>
 * These integrators evaluate the function on n carefully chosen
 * abscissas in each step interval (mapped to the canonical [-1,1] interval).
 * The evaluation abscissas are not evenly spaced and none of them are
 * at the interval endpoints. This implies the function integrated can be
 * undefined at integration interval endpoints.
 * </p>
 * <p>
 * The evaluation abscissas x<sub>i</sub> are the roots of the degree n
 * Legendre polynomial. The weights a<sub>i</sub> of the quadrature formula
 * integrals from -1 to +1 &int; Li<sup>2</sup> where Li (x) =
 * &prod; (x-x<sub>k</sub>)/(x<sub>i</sub>-x<sub>k</sub>) for k != i.
 * </p>
 * <p>
 * @version $Id: LegendreGaussIntegrator.java 1364452 2012-07-22 22:30:01Z erans $
 * @since 1.2
 * @deprecated As of 3.1 (to be removed in 4.0). Please use
 * {@link IterativeLegendreGaussIntegrator} instead.
 */
@Deprecated
public class LegendreGaussIntegrator extends BaseAbstractUnivariateIntegrator {

    /** Abscissas for the 2 points method. */
    private static final double[] ABSCISSAS_2 = { -1.0 / FastMath.sqrt(3.0), 1.0 / FastMath.sqrt(3.0) };

    /** Weights for the 2 points method. */
    private static final double[] WEIGHTS_2 = { 1.0, 1.0 };

    /** Abscissas for the 3 points method. */
    private static final double[] ABSCISSAS_3 = { -FastMath.sqrt(0.6), 0.0, FastMath.sqrt(0.6) };

    /** Weights for the 3 points method. */
    private static final double[] WEIGHTS_3 = { 5.0 / 9.0, 8.0 / 9.0, 5.0 / 9.0 };

    /** Abscissas for the 4 points method. */
    private static final double[] ABSCISSAS_4 = { -FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0),
            -FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
            FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
            FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0) };

    /** Weights for the 4 points method. */
    private static final double[] WEIGHTS_4 = { (90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0,
            (90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0, (90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0,
            (90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0 };

    /** Abscissas for the 5 points method. */
    private static final double[] ABSCISSAS_5 = { -FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0),
            -FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0), 0.0,
            FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0),
            FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0) };

    /** Weights for the 5 points method. */
    private static final double[] WEIGHTS_5 = { (322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0,
            (322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0, 128.0 / 225.0,
            (322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0, (322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0 };

    /** Abscissas for the current method. */
    private final double[] abscissas;

    /** Weights for the current method. */
    private final double[] weights;

    /**
     * Build a Legendre-Gauss integrator with given accuracies and iterations counts.
     * @param n number of points desired (must be between 2 and 5 inclusive)
     * @param relativeAccuracy relative accuracy of the result
     * @param absoluteAccuracy absolute accuracy of the result
     * @param minimalIterationCount minimum number of iterations
     * @param maximalIterationCount maximum number of iterations
     * @exception NotStrictlyPositiveException if minimal number of iterations
     * is not strictly positive
     * @exception NumberIsTooSmallException if maximal number of iterations
     * is lesser than or equal to the minimal number of iterations
     */
    public LegendreGaussIntegrator(final int n, final double relativeAccuracy, final double absoluteAccuracy,
            final int minimalIterationCount, final int maximalIterationCount)
            throws NotStrictlyPositiveException, NumberIsTooSmallException {
        super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
        switch (n) {
        case 2:
            abscissas = ABSCISSAS_2;
            weights = WEIGHTS_2;
            break;
        case 3:
            abscissas = ABSCISSAS_3;
            weights = WEIGHTS_3;
            break;
        case 4:
            abscissas = ABSCISSAS_4;
            weights = WEIGHTS_4;
            break;
        case 5:
            abscissas = ABSCISSAS_5;
            weights = WEIGHTS_5;
            break;
        default:
            throw new MathIllegalArgumentException(
                    LocalizedFormats.N_POINTS_GAUSS_LEGENDRE_INTEGRATOR_NOT_SUPPORTED, n, 2, 5);
        }

    }

    /**
     * Build a Legendre-Gauss integrator with given accuracies.
     * @param n number of points desired (must be between 2 and 5 inclusive)
     * @param relativeAccuracy relative accuracy of the result
     * @param absoluteAccuracy absolute accuracy of the result
     */
    public LegendreGaussIntegrator(final int n, final double relativeAccuracy, final double absoluteAccuracy) {
        this(n, relativeAccuracy, absoluteAccuracy, DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
    }

    /**
     * Build a Legendre-Gauss integrator with given iteration counts.
     * @param n number of points desired (must be between 2 and 5 inclusive)
     * @param minimalIterationCount minimum number of iterations
     * @param maximalIterationCount maximum number of iterations
     * @exception NotStrictlyPositiveException if minimal number of iterations
     * is not strictly positive
     * @exception NumberIsTooSmallException if maximal number of iterations
     * is lesser than or equal to the minimal number of iterations
     */
    public LegendreGaussIntegrator(final int n, final int minimalIterationCount, final int maximalIterationCount) {
        this(n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY, minimalIterationCount, maximalIterationCount);
    }

    /** {@inheritDoc} */
    @Override
    protected double doIntegrate() throws TooManyEvaluationsException, MaxCountExceededException {

        // compute first estimate with a single step
        double oldt = stage(1);

        int n = 2;
        while (true) {

            // improve integral with a larger number of steps
            final double t = stage(n);

            // estimate error
            final double delta = FastMath.abs(t - oldt);
            final double limit = FastMath.max(getAbsoluteAccuracy(),
                    getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5);

            // check convergence
            if ((iterations.getCount() + 1 >= getMinimalIterationCount()) && (delta <= limit)) {
                return t;
            }

            // prepare next iteration
            double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / abscissas.length));
            n = FastMath.max((int) (ratio * n), n + 1);
            oldt = t;
            iterations.incrementCount();

        }

    }

    /**
     * Compute the n-th stage integral.
     * @param n number of steps
     * @return the value of n-th stage integral
     * @throws TooManyEvaluationsException if the maximum number of evaluations
     * is exceeded.
     */
    private double stage(final int n) throws TooManyEvaluationsException {

        // set up the step for the current stage
        final double step = (getMax() - getMin()) / n;
        final double halfStep = step / 2.0;

        // integrate over all elementary steps
        double midPoint = getMin() + halfStep;
        double sum = 0.0;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < abscissas.length; ++j) {
                sum += weights[j] * computeObjectiveValue(midPoint + halfStep * abscissas[j]);
            }
            midPoint += step;
        }

        return halfStep * sum;

    }

}