Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package ffnn; import java.util.Random; import java.util.Scanner; import java.util.logging.Level; import java.util.logging.Logger; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.core.Instances; import weka.filters.Filter; import weka.filters.unsupervised.attribute.NominalToBinary; import weka.filters.unsupervised.attribute.Normalize; import weka.filters.unsupervised.attribute.Reorder; import weka.filters.unsupervised.attribute.StringToNominal; /** * * @author doubleH */ public class FFNN { public static Instances preprocess(Instances i) { try { Reorder rfilter = new Reorder(); int classIdx = i.classIndex() + 1; String order; if (classIdx != 1) { order = "1"; for (int j = 2; j <= i.numAttributes(); j++) { if (j != classIdx) { order = order + "," + j; } } } else { order = "2"; for (int j = 3; j <= i.numAttributes(); j++) { order = order + "," + j; } } order = order + "," + classIdx; rfilter.setAttributeIndices(order); rfilter.setInputFormat(i); i = Filter.useFilter(i, rfilter); StringToNominal stnfilter = new StringToNominal(); stnfilter.setAttributeRange("first-last"); stnfilter.setInputFormat(i); i = Filter.useFilter(i, stnfilter); NominalToBinary ntbfilter = new NominalToBinary(); ntbfilter.setInputFormat(i); i = Filter.useFilter(i, ntbfilter); Normalize nfilter = new Normalize(); nfilter.setInputFormat(i); i = Filter.useFilter(i, nfilter); } catch (Exception e) { System.out.println(e.toString()); } return i; } /** * @param args the command line arguments */ public static void main(String[] args) throws Exception { FFNNTubesAI cls; Scanner scan = new Scanner(System.in); System.out.print("new / read? (n/r)"); if (scan.next().equals("n")) { cls = new FFNNTubesAI(); } else { cls = (FFNNTubesAI) TucilWeka.readModel(); } int temp; Instances data = TucilWeka.readDataSet("C:\\Program Files\\Weka-3-8\\data\\Team.arff"); //Tampilkan opsi for (int i = 0; i < data.numAttributes(); i++) { System.out.println(i + ". " + data.attribute(i)); } System.out.print("Class Index : "); temp = scan.nextInt(); data.setClassIndex(temp); data = preprocess(data); System.out.println(data); System.out.print("full train? (y/n)"); if (scan.next().equals("y")) { try { cls.buildClassifier(data); } catch (Exception ex) { Logger.getLogger(FFNNTubesAI.class.getName()).log(Level.SEVERE, null, ex); } } int fold = 10; //FFNNTubesAI.printMatrix(cls.weight1, cls.input_layer+1, cls.hidden_layer); //FFNNTubesAI.printMatrix(cls.weight2, cls.hidden_layer, cls.output_layer); //FFNNTubesAI.printMatrix(cls.bias2, 1, cls.output_layer); Evaluation eval = new Evaluation(data); System.out.print("eval/10-fold? (e/f)"); if (scan.next().equals("e")) { eval.evaluateModel(cls, data); } else { eval.crossValidateModel(cls, data, fold, new Random(1)); } System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); System.out.println(eval.toClassDetailsString()); } }