edu.stanford.cfuller.imageanalysistools.fitting.GaussianImageObjectWithCovariance.java Source code

Java tutorial

Introduction

Here is the source code for edu.stanford.cfuller.imageanalysistools.fitting.GaussianImageObjectWithCovariance.java

Source

/* ***** BEGIN LICENSE BLOCK *****
 * 
 * Copyright (c) 2012 Colin J. Fuller
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 * 
 * ***** END LICENSE BLOCK ***** */

package edu.stanford.cfuller.imageanalysistools.fitting;

import java.util.List;

import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.integration.LegendreGaussIntegrator;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealVector;

import edu.stanford.cfuller.imageanalysistools.image.Image;
import edu.stanford.cfuller.imageanalysistools.image.ImageCoordinate;
import edu.stanford.cfuller.imageanalysistools.meta.parameters.ParameterDictionary;

/**
 * An ImageObject that fits to a three-dimensional Gaussian.  Unlike GaussianImageObject, this 
 * ImageObject can handle non-xy-symmetric Gaussians as well as Gaussians with covariance. 
 * 
 * @author Colin J. Fuller
 *
 */
public class GaussianImageObjectWithCovariance extends ImageObject {

    static final long serialVersionUID = 2L;

    /**
    * Optional Parameters
    */

    static final String Z_WIDTH_PARAM = "z_width";
    static final String XY_WIDTH_PARAM = "xy_width";

    /**
     * Creates an empty GaussianImageObject.
     */
    public GaussianImageObjectWithCovariance() {
        init();
    }

    /**
     * Creates a GaussianImageObject from the specified masked region in an Image.
     * @param label     The greylevel of the object in the Image mask.
     * @param mask      The mask of objects in the Image, with a unique greylevel assigned to each object.
     * @param parent    The Image that the object occurs in and that is masked by mask.
     * @param p         The parameters associated with this analysis.
     */
    public GaussianImageObjectWithCovariance(int label, Image mask, Image parent, ParameterDictionary p) {
        init(label, mask, parent, p);

    }

    /**
     * Fits this object to a 3-dimensional gaussian, and estimates error and goodness of fit.
     * @param p     The parameters for the current analysis.
     */
    public void fitPosition(ParameterDictionary p) {

        if (this.sizeInPixels == 0) {
            this.nullifyImages();
            return;
        }

        this.fitParametersByChannel = new java.util.ArrayList<FitParameters>();
        this.fitR2ByChannel = new java.util.ArrayList<Double>();
        this.fitErrorByChannel = new java.util.ArrayList<Double>();
        this.nPhotonsByChannel = new java.util.ArrayList<Double>();

        GaussianFitter3DWithCovariance gf = new GaussianFitter3DWithCovariance();

        //System.out.println(this.parent.getDimensionSizes().getZ());

        int numChannels = 0;

        if (p.hasKey("num_wavelengths")) {
            numChannels = p.getIntValueForKey("num_wavelengths");
        } else {
            numChannels = this.parent.getDimensionSizes().get(ImageCoordinate.C);
        }

        //for (int channelIndex = 0; channelIndex < this.parent.getDimensionSizes().getC(); channelIndex++) {
        for (int channelIndex = 0; channelIndex < numChannels; channelIndex++) {

            RealVector fitParameters = new ArrayRealVector(11, 0.0);

            double ppg = p.getDoubleValueForKey("photons_per_greylevel");

            this.parentBoxMin.set(ImageCoordinate.C, channelIndex);
            this.parentBoxMax.set(ImageCoordinate.C, channelIndex + 1);

            this.boxImages();

            List<Double> x = new java.util.ArrayList<Double>();
            List<Double> y = new java.util.ArrayList<Double>();
            List<Double> z = new java.util.ArrayList<Double>();
            List<Double> f = new java.util.ArrayList<Double>();

            for (ImageCoordinate ic : this.parent) {
                x.add((double) ic.get(ImageCoordinate.X));
                y.add((double) ic.get(ImageCoordinate.Y));
                z.add((double) ic.get(ImageCoordinate.Z));
                f.add((double) parent.getValue(ic));
            }

            xValues = new double[x.size()];
            yValues = new double[y.size()];
            zValues = new double[z.size()];
            functionValues = new double[f.size()];

            double xCentroid = 0;
            double yCentroid = 0;
            double zCentroid = 0;
            double totalCounts = 0;

            for (int i = 0; i < x.size(); i++) {

                xValues[i] = x.get(i);
                yValues[i] = y.get(i);
                zValues[i] = z.get(i);
                functionValues[i] = f.get(i) * ppg;
                xCentroid += xValues[i] * functionValues[i];
                yCentroid += yValues[i] * functionValues[i];
                zCentroid += zValues[i] * functionValues[i];
                totalCounts += functionValues[i];
            }

            xCentroid /= totalCounts;
            yCentroid /= totalCounts;
            zCentroid /= totalCounts;

            //z sometimes seems to be a bit off... trying (20110415) to go back to max value pixel at x,y centroid

            int xRound = (int) Math.round(xCentroid);
            int yRound = (int) Math.round(yCentroid);

            double maxVal = 0;
            int maxInd = 0;

            double minZ = Double.MAX_VALUE;
            double maxZ = 0;

            for (int i = 0; i < x.size(); i++) {

                if (zValues[i] < minZ)
                    minZ = zValues[i];
                if (zValues[i] > maxZ)
                    maxZ = zValues[i];

                if (xValues[i] == xRound && yValues[i] == yRound) {
                    if (functionValues[i] > maxVal) {
                        maxVal = functionValues[i];
                        maxInd = (int) zValues[i];
                    }
                }
            }

            zCentroid = maxInd;

            //parameter ordering: amplitude, var x-y, var z, x/y/z coords, background

            //amplitude: find the max value; background: find the min value

            double maxValue = 0;

            double minValue = Double.MAX_VALUE;

            for (ImageCoordinate ic : this.parent) {

                if (parent.getValue(ic) > maxValue)
                    maxValue = parent.getValue(ic);
                if (parent.getValue(ic) < minValue)
                    minValue = parent.getValue(ic);

            }

            fitParameters.setEntry(0, (maxValue - minValue) * 0.95);
            fitParameters.setEntry(10, minValue + 0.05 * (maxValue - minValue));

            //positions

            fitParameters.setEntry(7, xCentroid);
            fitParameters.setEntry(8, yCentroid);
            fitParameters.setEntry(9, zCentroid);

            //variances

            final double limitedWidthxy = 200;
            final double limitedWidthz = 500;

            double sizex = limitedWidthxy / p.getDoubleValueForKey("pixelsize_nm");
            double sizey = limitedWidthxy / p.getDoubleValueForKey("pixelsize_nm");
            double sizez = limitedWidthz / p.getDoubleValueForKey("z_sectionsize_nm");

            if (p.hasKey(Z_WIDTH_PARAM)) {
                sizez = p.getDoubleValueForKey(Z_WIDTH_PARAM);
            }

            if (p.hasKey(XY_WIDTH_PARAM)) {
                sizex = p.getDoubleValueForKey(XY_WIDTH_PARAM);
                sizey = p.getDoubleValueForKey(XY_WIDTH_PARAM);
            }

            fitParameters.setEntry(1, sizex / 2);
            fitParameters.setEntry(2, sizey / 2);
            fitParameters.setEntry(3, sizez / 2);

            //covariances -- guess zero to start

            fitParameters.setEntry(4, 0.0);
            fitParameters.setEntry(5, 0.0);
            fitParameters.setEntry(6, 0.0);

            //amplitude and background are in arbitrary intensity units; convert to photon counts

            fitParameters.setEntry(0, fitParameters.getEntry(0) * ppg);
            fitParameters.setEntry(10, fitParameters.getEntry(10) * ppg);

            //System.out.println("guess: " + fitParameters);

            //do the fit

            //System.out.println("Initial for object " + this.label + ": " + fitParameters.toString());

            fitParameters = gf.fit(this, fitParameters, ppg);

            //System.out.println("Parameters for object " + this.label + ": " + fitParameters.toString());

            //System.out.println("fit: " + fitParameters);

            FitParameters fp = new FitParameters();

            fp.setPosition(ImageCoordinate.X, fitParameters.getEntry(7));
            fp.setPosition(ImageCoordinate.Y, fitParameters.getEntry(8));
            fp.setPosition(ImageCoordinate.Z, fitParameters.getEntry(9));

            fp.setSize(ImageCoordinate.X, fitParameters.getEntry(1));
            fp.setSize(ImageCoordinate.Y, fitParameters.getEntry(2));
            fp.setSize(ImageCoordinate.Z, fitParameters.getEntry(3));

            fp.setAmplitude(fitParameters.getEntry(0));
            fp.setBackground(fitParameters.getEntry(10));

            fp.setOtherParameter("corr_xy", fitParameters.getEntry(4));
            fp.setOtherParameter("corr_xz", fitParameters.getEntry(5));
            fp.setOtherParameter("corr_yz", fitParameters.getEntry(6));

            fitParametersByChannel.add(fp);

            //            System.out.println(fitParameters);

            //calculate R2

            double residualSumSquared = 0;
            double mean = 0;
            double variance = 0;
            double R2 = 0;

            double n_photons = 0;

            for (int i = 0; i < this.xValues.length; i++) {

                residualSumSquared += Math.pow(GaussianFitter3DWithCovariance.fitResidual(functionValues[i],
                        xValues[i], yValues[i], zValues[i], fitParameters), 2);

                mean += functionValues[i];

                n_photons += functionValues[i] - fitParameters.getEntry(10);

            }

            mean /= functionValues.length;

            for (int i = 0; i < this.xValues.length; i++) {
                variance += Math.pow(functionValues[i] - mean, 2);
            }

            R2 = 1 - (residualSumSquared / variance);

            this.fitR2ByChannel.add(R2);

            this.unboxImages();

            //calculate fit error -- these are wrong for the case with unequal x-y variances and covariance allowed, but leave them for now.

            double s_xy = fitParameters.getEntry(1) * fitParameters.getEntry(1)
                    * Math.pow(p.getDoubleValueForKey("pixelsize_nm"), 2);
            double s_z = fitParameters.getEntry(3) * fitParameters.getEntry(3)
                    * Math.pow(p.getDoubleValueForKey("z_sectionsize_nm"), 2);

            //s_z = 0; //remove!!

            double error = (2 * s_xy + s_z) / (n_photons - 1);// + 4*Math.sqrt(Math.PI) * Math.pow(2*s_xy,1.5)*Math.pow(fitParameters.getEntry(6),2)/(p.getDoubleValueForKey("pixelsize_nm")*n_photons*n_photons);

            double b = fitParameters.getEntry(10);
            double a = p.getDoubleValueForKey("pixelsize_nm");
            double alpha = p.getDoubleValueForKey("z_sectionsize_nm");
            double sa_x = s_xy + Math.pow(a, 2) / 12;
            double sa_z = s_z + Math.pow(alpha, 2) / 12;
            double error_x = sa_x / n_photons * (16.0 / 9.0 + 8 * Math.PI * sa_x * b * b
                    / (n_photons * Math.pow(p.getDoubleValueForKey("pixelsize_nm"), 2)));
            double error_z = sa_z / n_photons * (16.0 / 9.0 + 8 * Math.PI * sa_z * b * b
                    / (n_photons * Math.pow(p.getDoubleValueForKey("z_sectionsize_nm"), 2)));

            double A = 1.0 / (2 * Math.sqrt(2) * Math.pow(Math.PI, 1.5) * Math.sqrt(sa_z) * sa_x);

            ErrIntFunc eif = new ErrIntFunc();

            eif.setParams(b, n_photons, A, sa_z, sa_x, a, alpha);

            //LegendreGaussIntegrator lgi = new LegendreGaussIntegrator(5, 10, 1000);

            //integrate over 10*width of PSF in z 

            //double size = 10*Math.sqrt(sa_z);

            //double intpart = 0;
            //            try {
            //               
            //               if (b < 0) throw new ConvergenceException(new DummyLocalizable("negative background!")); // a negative value for b seems to cause the integration to hang, preventing the program from progressing
            //               
            //               intpart = lgi.integrate(10000, eif, -size, size);
            //               
            //               double fullIntPart = intpart + Math.pow(2*Math.PI, 1.5)*sa_x*A/Math.sqrt(sa_z);
            //               
            //               error_x = Math.sqrt(2/(n_photons*sa_z/(2*sa_z + sa_x)*fullIntPart));
            //               error_z = Math.sqrt(2/(n_photons*sa_x/(2*sa_z + sa_x)*fullIntPart));
            //               
            //            } catch (ConvergenceException e) {
            //               LoggingUtilities.getLogger().severe("Integration error: " + e.getMessage());
            //               error_x = -1;
            //               error_z = -1;
            //            }
            //            

            if (error_x > 0 && error_z > 0) {

                error = Math.sqrt(2 * error_x * error_x + error_z * error_z);

            } else {
                error = Double.NaN;
            }

            error = 0; // until a better error calculation

            this.fitErrorByChannel.add(error);

            this.positionsByChannel.add(fitParameters.getSubVector(7, 3));

            this.nPhotonsByChannel.add(n_photons);

        }

        this.hadFittingError = false;
        this.nullifyImages();
    }

    protected class DI1Func implements UnivariateFunction {

        private double z;
        private double b;
        private double n;
        private double A;
        private double sa_z;
        private double a;
        private double alpha;

        public double value(double t) {

            double tau = b / (n * a * a * alpha * A * Math.exp(-z * z / (2 * sa_z)));

            return (-1.0 * t * Math.log(t) / (t + tau));
        }

        public void setZ(double z) {
            this.z = z;
        }

        public void setParams(double b, double n, double A, double sa_z, double a, double alpha) {
            this.b = b;
            this.n = n;
            this.A = A;
            this.sa_z = sa_z;
            this.a = a;
            this.alpha = alpha;
        }

    }

    protected class ErrIntFunc implements UnivariateFunction {
        private double b;
        private double n;
        private double A;
        private double sa_z;
        private double sa_x;
        private double a;
        private double alpha;

        private LegendreGaussIntegrator lgi;
        private DI1Func di1;

        public ErrIntFunc() {
            this.lgi = new LegendreGaussIntegrator(5, 10, 1000);
            this.di1 = new DI1Func();
        }

        public void setParams(double b, double n, double A, double sa_z, double sa_x, double a, double alpha) {
            this.b = b;
            this.n = n;
            this.A = A;
            this.sa_z = sa_z;
            this.sa_x = sa_x;
            this.a = a;
            this.alpha = alpha;
            this.di1.setParams(b, n, A, sa_z, a, alpha);
        }

        public double value(double z) throws IllegalArgumentException {

            this.di1.setZ(z);

            double I1 = 0;

            try {
                I1 = lgi.integrate(10000, di1, 0, 1);
            } catch (ConvergenceException e) {
                throw new IllegalArgumentException(e);
            }

            double part1 = 4 * Math.PI * A * Math.exp(-z * z / (2 * sa_z)) * I1;

            double part2 = 2 * Math.PI * sa_x * b / (sa_z * sa_z * n * a * a * alpha) * z * z
                    * Math.log(1 / (1 + n * A * a * a * alpha * Math.exp(-z * z / (2 * sa_z)) / b));

            return part1 + part2;

        }

    }

}