edu.rosehulman.CollocDriver.java Source code

Java tutorial

Introduction

Here is the source code for edu.rosehulman.CollocDriver.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package edu.rosehulman;

import java.io.IOException;
import java.util.List;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.lucene.AnalyzerUtils;
import org.apache.mahout.vectorizer.DocumentProcessor;
import org.apache.mahout.vectorizer.collocations.llr.CollocCombiner;
import org.apache.mahout.vectorizer.collocations.llr.CollocReducer;
import org.apache.mahout.vectorizer.collocations.llr.Gram;
import org.apache.mahout.vectorizer.collocations.llr.GramKey;
import org.apache.mahout.vectorizer.collocations.llr.GramKeyPartitioner;
import org.apache.mahout.vectorizer.collocations.llr.LLRReducer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/** Driver for LLR Collocation discovery mapreduce job */
public final class CollocDriver extends AbstractJob {
    //public static final String DEFAULT_OUTPUT_DIRECTORY = "output";

    public static final String SUBGRAM_OUTPUT_DIRECTORY = "subgrams";

    public static final String NGRAM_OUTPUT_DIRECTORY = "ngrams";

    public static final String EMIT_UNIGRAMS = "emit-unigrams";

    public static final boolean DEFAULT_EMIT_UNIGRAMS = false;

    private static final int DEFAULT_MAX_NGRAM_SIZE = 2;

    private static final int DEFAULT_PASS1_NUM_REDUCE_TASKS = 1;

    private static final Logger log = LoggerFactory.getLogger(CollocDriver.class);

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new CollocDriver(), args);
    }

    @SuppressWarnings("deprecation")
    public int run(String[] args) throws Exception {
        addInputOption();
        addOutputOption();
        addOption(DefaultOptionCreator.numReducersOption().create());

        addOption("maxNGramSize", "ng",
                "(Optional) The max size of ngrams to create (2 = bigrams, 3 = trigrams, etc) default: 2",
                String.valueOf(DEFAULT_MAX_NGRAM_SIZE));
        addOption("minSupport", "s",
                "(Optional) Minimum Support. Default Value: " + CollocReducer.DEFAULT_MIN_SUPPORT,
                String.valueOf(CollocReducer.DEFAULT_MIN_SUPPORT));
        addOption("minLLR", "ml",
                "(Optional)The minimum Log Likelihood Ratio(Float)  Default is " + LLRReducer.DEFAULT_MIN_LLR,
                String.valueOf(LLRReducer.DEFAULT_MIN_LLR));
        addOption(DefaultOptionCreator.overwriteOption().create());
        addOption("analyzerName", "a", "The class name of the analyzer to use for preprocessing", null);

        addFlag("preprocess", "p", "If set, input is SequenceFile<Text,Text> where the value is the document, "
                + " which will be tokenized using the specified analyzer.");
        addFlag("unigram", "u", "If set, unigrams will be emitted in the final output alongside collocations");

        Map<String, List<String>> argMap = parseArguments(args);

        if (argMap == null) {
            return -1;
        }

        Path input = getInputPath();
        Path output = getOutputPath();

        int maxNGramSize = DEFAULT_MAX_NGRAM_SIZE;
        if (hasOption("maxNGramSize")) {
            try {
                maxNGramSize = Integer.parseInt(getOption("maxNGramSize"));
            } catch (NumberFormatException ex) {
                log.warn("Could not parse ngram size option");
            }
        }
        log.info("Maximum n-gram size is: {}", maxNGramSize);

        if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
            HadoopUtil.delete(getConf(), output);
        }

        int minSupport = CollocReducer.DEFAULT_MIN_SUPPORT;
        if (getOption("minSupport") != null) {
            minSupport = Integer.parseInt(getOption("minSupport"));
        }
        log.info("Minimum Support value: {}", minSupport);

        float minLLRValue = LLRReducer.DEFAULT_MIN_LLR;
        if (getOption("minLLR") != null) {
            minLLRValue = Float.parseFloat(getOption("minLLR"));
        }
        log.info("Minimum LLR value: {}", minLLRValue);

        int reduceTasks = DEFAULT_PASS1_NUM_REDUCE_TASKS;
        if (getOption("maxRed") != null) {
            reduceTasks = Integer.parseInt(getOption("maxRed"));
        }
        log.info("Number of pass1 reduce tasks: {}", reduceTasks);

        boolean emitUnigrams = argMap.containsKey("emitUnigrams");

        if (argMap.containsKey("preprocess")) {
            log.info("Input will be preprocessed");
            Class<? extends Analyzer> analyzerClass = StandardAnalyzer.class;
            if (getOption("analyzerName") != null) {
                String className = getOption("analyzerName");
                analyzerClass = Class.forName(className).asSubclass(Analyzer.class);
                // try instantiating it, b/c there isn't any point in setting it if
                // you can't instantiate it
                AnalyzerUtils.createAnalyzer(analyzerClass);
            }

            Path tokenizedPath = new Path(output, DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER);

            DocumentProcessor.tokenizeDocuments(input, analyzerClass, tokenizedPath, getConf());
            input = tokenizedPath;
        } else {
            log.info("Input will NOT be preprocessed");
        }

        // parse input and extract collocations
        long ngramCount = generateCollocations(input, output, getConf(), emitUnigrams, maxNGramSize, reduceTasks,
                minSupport);

        // tally collocations and perform LLR calculation
        computeNGramsPruneByLLR(output, getConf(), ngramCount, emitUnigrams, minLLRValue, reduceTasks);

        return 0;
    }

    /**
     * Generate all ngrams for the {@link org.apache.mahout.vectorizer.DictionaryVectorizer} job
     * 
     * @param input
     *          input path containing tokenized documents
     * @param output
     *          output path where ngrams are generated including unigrams
     * @param baseConf
     *          job configuration
     * @param maxNGramSize
     *          minValue = 2.
     * @param minSupport
     *          minimum support to prune ngrams including unigrams
     * @param minLLRValue
     *          minimum threshold to prune ngrams
     * @param reduceTasks
     *          number of reducers used
     */
    public static void generateAllGrams(Path input, Path output, Configuration baseConf, int maxNGramSize,
            int minSupport, float minLLRValue, int reduceTasks)
            throws IOException, InterruptedException, ClassNotFoundException {
        // parse input and extract collocations
        long ngramCount = generateCollocations(input, output, baseConf, true, maxNGramSize, reduceTasks,
                minSupport);

        // tally collocations and perform LLR calculation
        computeNGramsPruneByLLR(output, baseConf, ngramCount, true, minLLRValue, reduceTasks);
    }

    /**
     * pass1: generate collocations, ngrams
     */
    @SuppressWarnings("deprecation")
    private static long generateCollocations(Path input, Path output, Configuration baseConf, boolean emitUnigrams,
            int maxNGramSize, int reduceTasks, int minSupport)
            throws IOException, ClassNotFoundException, InterruptedException {

        Configuration con = new Configuration(baseConf);
        con.setBoolean(EMIT_UNIGRAMS, emitUnigrams);
        con.setInt(CollocMapper.MAX_SHINGLE_SIZE, maxNGramSize);
        con.setInt(CollocReducer.MIN_SUPPORT, minSupport);

        Job job = new Job(con);
        job.setJobName(CollocDriver.class.getSimpleName() + ".generateCollocations:" + input);
        job.setJarByClass(CollocDriver.class);

        job.setMapOutputKeyClass(GramKey.class);
        job.setMapOutputValueClass(Gram.class);
        job.setPartitionerClass(GramKeyPartitioner.class);
        job.setGroupingComparatorClass(GramKeyGroupComparator.class);

        job.setOutputKeyClass(Gram.class);
        job.setOutputValueClass(Gram.class);

        job.setCombinerClass(CollocCombiner.class);

        FileInputFormat.setInputPaths(job, input);

        Path outputPath = new Path(output, SUBGRAM_OUTPUT_DIRECTORY);
        FileOutputFormat.setOutputPath(job, outputPath);

        job.setInputFormatClass(SequenceFileInputFormat.class);
        job.setMapperClass(CollocMapper.class);

        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setReducerClass(CollocReducer.class);
        job.setNumReduceTasks(reduceTasks);

        boolean succeeded = job.waitForCompletion(true);
        if (!succeeded) {
            throw new IllegalStateException("Job failed!");
        }

        return job.getCounters().findCounter(CollocMapper.Count.NGRAM_TOTAL).getValue();
    }

    /**
     * pass2: perform the LLR calculation
     */
    private static void computeNGramsPruneByLLR(Path output, Configuration baseConf, long nGramTotal,
            boolean emitUnigrams, float minLLRValue, int reduceTasks)
            throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration(baseConf);
        conf.setLong(LLRReducer.NGRAM_TOTAL, nGramTotal);
        conf.setBoolean(EMIT_UNIGRAMS, emitUnigrams);
        conf.setFloat(LLRReducer.MIN_LLR, minLLRValue);

        Job job = new Job(conf);
        job.setJobName(CollocDriver.class.getSimpleName() + ".computeNGrams: " + output);
        job.setJarByClass(CollocDriver.class);

        job.setMapOutputKeyClass(Gram.class);
        job.setMapOutputValueClass(Gram.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DoubleWritable.class);

        FileInputFormat.setInputPaths(job, new Path(output, SUBGRAM_OUTPUT_DIRECTORY));
        Path outPath = new Path(output, NGRAM_OUTPUT_DIRECTORY);
        FileOutputFormat.setOutputPath(job, outPath);

        job.setMapperClass(Mapper.class);
        job.setInputFormatClass(SequenceFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setReducerClass(LLRReducer.class);
        job.setNumReduceTasks(reduceTasks);

        boolean succeeded = job.waitForCompletion(true);
        if (!succeeded) {
            throw new IllegalStateException("Job failed!");
        }
    }
}