Java tutorial
/* * ReflectedNormalDistribution.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.math.distributions; import dr.math.UnivariateFunction; import org.apache.commons.math.ConvergenceException; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.analysis.integration.RombergIntegrator; import org.apache.commons.math.analysis.integration.UnivariateRealIntegrator; /** * reflected normal distribution (pdf, cdf, quantile) * * @author Alexei Drummond * @author Marc Suchard */ public class ReflectedNormalDistribution implements Distribution { // // Public stuff // double lower; double upper; double precision; double m; double sd; /** * Constructor */ public ReflectedNormalDistribution(double mean, double sd, double lower, double upper, double precision) { this.m = mean; this.sd = sd; this.lower = lower; this.upper = upper; this.precision = precision; } public double getMean() { return m; } public void setMean(double value) { m = value; } public double getSD() { return sd; } public void setSD(double value) { sd = value; } public double pdf(double x) { if (x < lower) return 0; if (x > upper) return 0; double pdf = NormalDistribution.pdf(x, m, sd); double newPDF = pdf; System.out.println("N(" + x + ",m,sd)=" + pdf); int i = 1; do { pdf = newPDF; int A = 2 * ((i + 1) / 2); // 2 2 4 4 6 6 int B = 2 * (i / 2); // 0 2 2 4 4 6 int C = i % 2 == 0 ? -1 : 1; // 1 -1 1 -1 1 -1 double leftPDF = NormalDistribution.pdf(A * lower - C * x - B * upper, m, sd); double rightPDF = NormalDistribution.pdf(A * upper - C * x - B * lower, m, sd); newPDF = leftPDF + rightPDF + pdf; i += 1; System.out.println("newPDF=" + newPDF + " A=" + A + " B=" + B + " C=" + C); } while (newPDF - pdf > precision); return newPDF; } public double logPdf(double x) { throw new RuntimeException("Not implemented!"); } public double cdf(double x) { throw new RuntimeException("Not implemented!"); } public double quantile(double y) { throw new RuntimeException("Not implemented!"); } public double mean() { throw new RuntimeException("Not implemented!"); } public double variance() { throw new RuntimeException("Not implemented!"); } public final UnivariateFunction getProbabilityDensityFunction() { return pdfFunction; } private final UnivariateFunction pdfFunction = new UnivariateFunction() { public final double evaluate(double x) { return pdf(x); } public final double getLowerBound() { return lower; } public final double getUpperBound() { return upper; } }; public static void main(String[] args) { // final ReflectedNormalDistribution rnd = new ReflectedNormalDistribution(2, 2, 0.5, 2, 1e-6); final ReflectedNormalDistribution rnd = new ReflectedNormalDistribution(2, 2, 1, 2, 1e-6); rnd.pdf(1); UnivariateRealFunction f = new UnivariateRealFunction() { public double value(double v) throws FunctionEvaluationException { return rnd.pdf(v); } }; final UnivariateRealIntegrator integrator = new RombergIntegrator(); integrator.setAbsoluteAccuracy(1e-14); integrator.setMaximalIterationCount(16); // fail if it takes too much time double x; try { x = integrator.integrate(f, rnd.lower, rnd.upper); // ptotErr += cdf != 0.0 ? Math.abs(x-cdf)/cdf : x; // np += 1; //assertTrue("" + shape + "," + scale + "," + value + " " + Math.abs(x-cdf)/x + "> 1e-6", Math.abs(1-cdf/x) < 1e-6); System.out.println("Integrated pdf = " + x); //System.out.println(shape + "," + scale + " " + value); } catch (ConvergenceException e) { // can't integrate , skip test // System.out.println(shape + "," + scale + " skipped"); } catch (FunctionEvaluationException e) { throw new RuntimeException("I have no idea why I am here."); } } }