Java tutorial
/* * PoissonDistribution.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.math.distributions; import dr.math.Poisson; import dr.math.UnivariateFunction; import org.apache.commons.math.MathException; import org.apache.commons.math.distribution.PoissonDistributionImpl; /** * @author Alexei Drummond * @version $Id$ */ public class PoissonDistribution implements Distribution { org.apache.commons.math.distribution.PoissonDistribution distribution; public PoissonDistribution(double mean) { distribution = new org.apache.commons.math.distribution.PoissonDistributionImpl(mean); } public double pdf(double x) { return distribution.probability(x); } public double logPdf(double x) { double pdf = distribution.probability(x); if (pdf == 0 || Double.isNaN(pdf)) { // bad estimate final double mean = mean(); return x * Math.log(mean) - Poisson.gammln(x + 1) - mean; } return Math.log(pdf); } public double cdf(double x) { try { return distribution.cumulativeProbability(x); } catch (MathException e) { throw new RuntimeException(e); } } public double quantile(double y) { try { return distribution.inverseCumulativeProbability(y); } catch (MathException e) { throw new RuntimeException(e); } } public double mean() { return distribution.getMean(); } public double variance() { return distribution.getMean(); } public UnivariateFunction getProbabilityDensityFunction() { throw new RuntimeException(); } public double truncatedMean(int max) { double CDF = 0; double mean = 0; for (int i = 0; i <= max; i++) { double p = distribution.probability(i); mean += i * p; CDF += p; } return mean / CDF; } public static double pdf(double x, double mean) { PoissonDistributionImpl dist = new PoissonDistributionImpl(mean); return dist.probability(x); } public static double logPdf(double x, double mean) { PoissonDistributionImpl dist = new PoissonDistributionImpl(mean); double pdf = dist.probability(x); if (pdf == 0 || Double.isNaN(pdf)) { // bad estimate return x * Math.log(mean) - Poisson.gammln(x + 1) - mean; } return Math.log(pdf); } public static double cdf(double x, double mean) { try { PoissonDistributionImpl dist = new PoissonDistributionImpl(mean); return dist.cumulativeProbability(x); } catch (MathException e) { throw new RuntimeException(e); } } public static double quantile(double y, double mean) { try { PoissonDistributionImpl dist = new PoissonDistributionImpl(mean); return dist.inverseCumulativeProbability(y); } catch (MathException e) { throw new RuntimeException(e); } } }