Java tutorial
/* * RandomBranchModel.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evomodel.branchmodel; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.List; import org.apache.commons.math.random.MersenneTwister; import dr.evomodel.substmodel.FrequencyModel; import dr.evomodel.substmodel.codon.GY94CodonModel; import dr.evomodel.substmodel.SubstitutionModel; import dr.evolution.datatype.Codons; import dr.evolution.datatype.DataType; import dr.evolution.tree.NodeRef; import dr.evomodel.tree.TreeModel; import dr.inference.model.AbstractModel; import dr.inference.model.Model; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.inference.model.Variable.ChangeType; import dr.math.MathUtils; /** * @author Filip Bielejec * @version $Id$ * */ @SuppressWarnings("serial") public class RandomBranchModel extends AbstractModel implements BranchModel { public static final String RANDOM_BRANCH_MODEL = "randomBranchModel"; private final TreeModel treeModel; private GY94CodonModel baseSubstitutionModel; private LinkedList<SubstitutionModel> substitutionModels; private LinkedHashMap<NodeRef, Integer> branchAssignmentMap; // TODO: parse distribution model for e_i // TODO: parse substitution model (hardcoded now) // TODO: parse parameter that follows trend (hardcoded now) private double rate; private static MersenneTwister random; public RandomBranchModel(TreeModel treeModel, // GY94CodonModel baseSubstitutionModel, // double rate, // boolean hasSeed, long seed) { super(RANDOM_BRANCH_MODEL); this.treeModel = treeModel; this.baseSubstitutionModel = baseSubstitutionModel; this.rate = rate; if (hasSeed) { // use fixed seed for e_i random = new MersenneTwister(seed); } else { //use BEAST seed random = new MersenneTwister(MathUtils.nextLong()); } //END: seed check setup(); }// END: Constructor private void setup() { DataType dataType = baseSubstitutionModel.getDataType(); FrequencyModel freqModel = baseSubstitutionModel.getFrequencyModel(); Parameter kappaParameter = new Parameter.Default("kappa", 1, baseSubstitutionModel.getKappa()); substitutionModels = new LinkedList<SubstitutionModel>(); branchAssignmentMap = new LinkedHashMap<NodeRef, Integer>(); int branchClass = 0; for (NodeRef node : treeModel.getNodes()) { if (!treeModel.isRoot(node)) { double nodeHeight = treeModel.getNodeHeight(node); double parentHeight = treeModel.getNodeHeight(treeModel.getParent(node)); double time = 0.5 * (parentHeight + nodeHeight); double baseOmega = baseSubstitutionModel.getOmega(); double fixed = baseOmega * time; double epsilon = (Math.log(1 - random.nextDouble()) / (-rate)); //Math.exp((random.nextGaussian() * stdev + mean)); double value = fixed + epsilon; Parameter omegaParameter = new Parameter.Default("omega", 1, value); GY94CodonModel gy94 = new GY94CodonModel((Codons) dataType, omegaParameter, kappaParameter, freqModel); substitutionModels.add(gy94); branchAssignmentMap.put(node, branchClass); branchClass++; } //END: root check } // END: nodes loop }// END: setup @Override public Mapping getBranchModelMapping(NodeRef branch) { final int branchClass = branchAssignmentMap.get(branch); return new Mapping() { public int[] getOrder() { return new int[] { branchClass }; } public double[] getWeights() { return new double[] { 1.0 }; } }; } @Override public List<SubstitutionModel> getSubstitutionModels() { return substitutionModels; } @Override public SubstitutionModel getRootSubstitutionModel() { // int rootClass = branchAssignmentMap.get(treeModel.getRoot()); // return substitutionModels.get(rootClass); throw new RuntimeException("Not implemented!"); } @Override public FrequencyModel getRootFrequencyModel() { return getRootSubstitutionModel().getFrequencyModel(); } @Override public boolean requiresMatrixConvolution() { return false; } @Override protected void handleModelChangedEvent(Model model, Object object, int index) { fireModelChanged(); } @Override protected void handleVariableChangedEvent(Variable variable, int index, ChangeType type) { } @Override protected void storeState() { } @Override protected void restoreState() { } @Override protected void acceptState() { } }// END: class