Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package detplagiasi; import static detplagiasi.Clustering.getArffFile; import static detplagiasi.Clustering.getDataTraining; import static detplagiasi.Clustering.getDataUji; import static detplagiasi.Clustering.noClusterUji; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.logging.Level; import java.util.logging.Logger; import weka.clusterers.ClusterEvaluation; import weka.clusterers.DensityBasedClusterer; import weka.clusterers.EM; import weka.core.Instances; /** * * @author vebry3 */ public class EMClustering extends Clustering { EMClustering() { addd = ct.getAddress(); try { ClusterEvaluation eval; Instances data; String[] options; DensityBasedClusterer cl; File he = getArffFile(); data = new Instances(new BufferedReader(new FileReader(he))); System.out.println("-----EM Clustering-----"); // normal try (BufferedWriter out = new BufferedWriter(new FileWriter(addd + "\\output.txt", true))) { out.write("\r\n--> normal\r\n"); options = new String[2]; options[0] = "-t"; options[1] = he.getAbsolutePath(); out.write("\r\n" + ClusterEvaluation.evaluateClusterer(new EM(), options) + "\r\n"); out.write("\r\n"); // manual call out.write("\n--> manual\r\n"); cl = new EM(); out.write("\r\n"); cl.buildClusterer(data); getDataUji(); getDataTraining(); System.out.println("jumlah kluster = " + cl.numberOfClusters()); noClusterUji = cl.clusterInstance(dataUji.instance(0)); totalCluster = cl.numberOfClusters(); System.out.println("kluster = " + cl.clusterInstance(dataUji.instance(0))); for (int b = 0; b < dataTraining.numInstances(); b++) { System.out.print("file " + td.fileName[b] + " termasuk cluster ke "); array1[b] = td.fileName[b]; array2[b] = cl.clusterInstance(dataTraining.instance(b)); System.out.println(cl.clusterInstance(dataTraining.instance(b))); //simpan nilai instance ke dalam sebuah array int buat dikirim ke detplaggui } out.write("\r\n"); eval = new ClusterEvaluation(); eval.setClusterer(cl); eval.evaluateClusterer(new Instances(data)); out.write("\r\n\n# of clusters: " + eval.getNumClusters()); } catch (Exception e) { System.err.println(e.getMessage()); System.out.println("error2 em cluster"); } } catch (IOException ex) { Logger.getLogger(EMClustering.class.getName()).log(Level.SEVERE, null, ex); System.out.println("errorrrr null em"); } } }