Java tutorial
/* * RapidMiner * * Copyright (C) 2001-2008 by Rapid-I and the contributors * * Complete list of developers available at our web site: * * http://rapid-i.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see http://www.gnu.org/licenses/. */ package com.rapidminer.operator.validation; import java.util.BitSet; import com.rapidminer.example.ExampleSet; import com.rapidminer.operator.IOObject; import com.rapidminer.operator.InputDescription; import com.rapidminer.operator.Operator; import com.rapidminer.operator.OperatorDescription; import com.rapidminer.operator.OperatorException; import com.rapidminer.operator.UserError; import com.rapidminer.operator.performance.EstimatedPerformance; import com.rapidminer.operator.performance.PerformanceVector; import com.rapidminer.tools.WekaInstancesAdaptor; import com.rapidminer.tools.WekaTools; import weka.attributeSelection.ConsistencySubsetEval; import weka.core.Instances; /** * <p> * Consistency attribute subset evaluator. For more information see: <br/> Liu, * H., and Setiono, R., (1996). A probabilistic approach to feature selection - * A filter solution. In 13th International Conference on Machine Learning * (ICML'96), July 1996, pp. 319-327. Bari, Italy. * </p> * * <p> * This operator evaluates the worth of a subset of attributes by the level of * consistency in the class values when the training instances are projected * onto the subset of attributes. Consistency of any subset can never be lower * than that of the full set of attributes, hence the usual practice is to use * this subset evaluator in conjunction with a Random or Exhaustive search which * looks for the smallest subset with consistency equal to that of the full set * of attributes. * </p> * * <p> * This operator can only be applied for classification data sets, i.e. where * the label attribute is nominal. * </p> * * @author Ingo Mierswa * @version $Id: ConsistencyFeatureSetEvaluator.java,v 1.4 2006/04/05 09:42:02 * ingomierswa Exp $ */ public class ConsistencyFeatureSetEvaluator extends Operator { public ConsistencyFeatureSetEvaluator(OperatorDescription description) { super(description); } /** Shows a parameter keep_example_set with default value "false". */ public InputDescription getInputDescription(Class cls) { if (ExampleSet.class.isAssignableFrom(cls)) { return new InputDescription(cls, false, true); } else { return super.getInputDescription(cls); } } public IOObject[] apply() throws OperatorException { ExampleSet exampleSet = getInput(ExampleSet.class); Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances", WekaInstancesAdaptor.LEARNING); double performance = 0.0d; try { ConsistencySubsetEval evaluator = new ConsistencySubsetEval(); evaluator.buildEvaluator(instances); BitSet bitSet = new BitSet(exampleSet.getAttributes().size()); bitSet.flip(0, exampleSet.getAttributes().size()); performance = evaluator.evaluateSubset(bitSet); } catch (Exception e) { throw new UserError(this, e, 905, new Object[] { "ConsistencySubsetEval", e.getMessage() }); } PerformanceVector result = new PerformanceVector(); result.addCriterion(new EstimatedPerformance("ConsistencyFS", performance, 1, false)); return new IOObject[] { result }; } public Class[] getInputClasses() { return new Class[] { ExampleSet.class }; } public Class[] getOutputClasses() { return new Class[] { PerformanceVector.class }; } }