Java tutorial
/* * RapidMiner * * Copyright (C) 2001-2008 by Rapid-I and the contributors * * Complete list of developers available at our web site: * * http://rapid-i.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see http://www.gnu.org/licenses/. */ package com.rapidminer.operator.features.transformation; import java.util.List; import com.rapidminer.example.ExampleSet; import com.rapidminer.operator.IOObject; import com.rapidminer.operator.Operator; import com.rapidminer.operator.OperatorDescription; import com.rapidminer.operator.OperatorException; import com.rapidminer.operator.UserError; import com.rapidminer.parameter.ParameterType; import com.rapidminer.parameter.ParameterTypeDouble; import com.rapidminer.tools.WekaInstancesAdaptor; import com.rapidminer.tools.WekaTools; import weka.attributeSelection.PrincipalComponents; import weka.core.Instances; /** * Builds the principal components of the given data. The user can specify the * amount of variance to cover in the original data when retaining the best * number of principal components. This operator makes use of the Weka * implementation <code>PrincipalComponent</code>. * * @author Ingo Mierswa * @version $Id: PrincipalComponentsTransformation.java,v 1.1 2006/04/14 * 13:07:13 ingomierswa Exp $ */ public class PrincipalComponentsTransformation extends Operator { /** The parameter name for "The minimum variance to cover in the original data to determine the number of principal components." */ public static final String PARAMETER_MIN_VARIANCE_COVERAGE = "min_variance_coverage"; public PrincipalComponentsTransformation(OperatorDescription description) { super(description); } public IOObject[] apply() throws OperatorException { ExampleSet exampleSet = getInput(ExampleSet.class); PrincipalComponents transformation = new PrincipalComponents(); transformation.setNormalize(false); // if the user wants to normalize // the data he has to apply the // filter before transformation.setVarianceCovered(getParameterAsDouble(PARAMETER_MIN_VARIANCE_COVERAGE)); log(getName() + ": Converting to Weka instances."); Instances instances = WekaTools.toWekaInstances(exampleSet, "PCAInstances", WekaInstancesAdaptor.LEARNING); try { log(getName() + ": Building principal components."); transformation.buildEvaluator(instances); } catch (Exception e) { throw new UserError(this, e, 905, new Object[] { "PrincipalComponents", e }); } ExampleSet result = null; try { Instances transformed = transformation.transformedData(); result = WekaTools.toRapidMinerExampleSet(transformed, "pc"); } catch (Exception e) { throw new UserError(this, 905, "Principal Components Transformation", "Cannot convert to principal components (" + e.getMessage() + ")"); } return new IOObject[] { result }; } public Class[] getOutputClasses() { return new Class[] { ExampleSet.class }; } public Class[] getInputClasses() { return new Class[] { ExampleSet.class }; } public List<ParameterType> getParameterTypes() { List<ParameterType> types = super.getParameterTypes(); ParameterType type = new ParameterTypeDouble(PARAMETER_MIN_VARIANCE_COVERAGE, "The minimum variance to cover in the original data to determine the number of principal components.", 0.0, 1.0, 0.95); type.setExpert(false); types.add(type); return types; } }