com.netease.news.classifier.naivebayes.TrainNaiveBayesJob.java Source code

Java tutorial

Introduction

Here is the source code for com.netease.news.classifier.naivebayes.TrainNaiveBayesJob.java

Source

package com.netease.news.classifier.naivebayes;
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.IOException;
import java.util.List;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.training.IndexInstancesMapper;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.common.mapreduce.VectorSumReducer;
import org.apache.mahout.math.VectorWritable;

import com.google.common.base.Splitter;

/**
 * This class trains a Naive Bayes Classifier (Parameters for both Naive Bayes and Complementary Naive Bayes)
 */
public final class TrainNaiveBayesJob extends AbstractJob {
    private static final String TRAIN_COMPLEMENTARY = "trainComplementary";
    private static final String ALPHA_I = "alphaI";
    private static final String LABEL_INDEX = "labelIndex";
    private static final String EXTRACT_LABELS = "extractLabels";
    private static final String LABELS = "labels";
    public static final String WEIGHTS_PER_FEATURE = "__SPF";
    public static final String WEIGHTS_PER_LABEL = "__SPL";
    public static final String LABEL_THETA_NORMALIZER = "_LTN";

    public static final String SUMMED_OBSERVATIONS = "summedObservations";
    public static final String WEIGHTS = "weights";
    public static final String THETAS = "thetas";

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new Configuration(), new TrainNaiveBayesJob(), args);
        System.out.println("Train NaiveBayes model done!");
    }

    @Override
    public int run(String[] args) throws Exception {

        addInputOption();
        addOutputOption();
        addOption(LABELS, "l", "comma-separated list of labels to include in training", false);

        addOption(buildOption(EXTRACT_LABELS, "el", "Extract the labels from the input", false, false, ""));
        addOption(ALPHA_I, "a", "smoothing parameter", String.valueOf(1.0f));
        addOption(
                buildOption(TRAIN_COMPLEMENTARY, "c", "train complementary?", false, false, String.valueOf(false)));
        addOption(LABEL_INDEX, "li", "The path to store the label index in", false);
        addOption(DefaultOptionCreator.overwriteOption().create());
        Map<String, List<String>> parsedArgs = parseArguments(args);
        if (parsedArgs == null) {
            return -1;
        }
        if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
            HadoopUtil.delete(getConf(), getOutputPath());
            HadoopUtil.delete(getConf(), getTempPath());
        }
        Path labPath;
        String labPathStr = getOption(LABEL_INDEX);
        if (labPathStr != null) {
            labPath = new Path(labPathStr);
        } else {
            labPath = getTempPath(LABEL_INDEX);
        }
        long labelSize = createLabelIndex(labPath);
        float alphaI = Float.parseFloat(getOption(ALPHA_I));
        boolean trainComplementary = Boolean.parseBoolean(getOption(TRAIN_COMPLEMENTARY));

        HadoopUtil.setSerializations(getConf());
        HadoopUtil.cacheFiles(labPath, getConf());

        //add up all the vectors with the same labels, while mapping the labels into our index
        Job indexInstances = prepareJob(getInputPath(), getTempPath(SUMMED_OBSERVATIONS),
                SequenceFileInputFormat.class, IndexInstancesMapper.class, IntWritable.class, VectorWritable.class,
                VectorSumReducer.class, IntWritable.class, VectorWritable.class, SequenceFileOutputFormat.class);
        indexInstances.setCombinerClass(VectorSumReducer.class);
        boolean succeeded = indexInstances.waitForCompletion(true);
        if (!succeeded) {
            return -1;
        }
        //sum up all the weights from the previous step, per label and per feature
        Job weightSummer = prepareJob(getTempPath(SUMMED_OBSERVATIONS), getTempPath(WEIGHTS),
                SequenceFileInputFormat.class, WeightsMapper.class, Text.class, VectorWritable.class,
                VectorSumReducer.class, Text.class, VectorWritable.class, SequenceFileOutputFormat.class);
        weightSummer.getConfiguration().set(WeightsMapper.NUM_LABELS, String.valueOf(labelSize));
        weightSummer.setCombinerClass(VectorSumReducer.class);
        succeeded = weightSummer.waitForCompletion(true);
        if (!succeeded) {
            return -1;
        }

        //put the per label and per feature vectors into the cache
        HadoopUtil.cacheFiles(getTempPath(WEIGHTS), getConf());

        //calculate the Thetas, write out to LABEL_THETA_NORMALIZER vectors --
        // TODO: add reference here to the part of the Rennie paper that discusses this
        Job thetaSummer = prepareJob(getTempPath(SUMMED_OBSERVATIONS), getTempPath(THETAS),
                SequenceFileInputFormat.class, ThetaMapper.class, Text.class, VectorWritable.class,
                VectorSumReducer.class, Text.class, VectorWritable.class, SequenceFileOutputFormat.class);
        thetaSummer.setCombinerClass(VectorSumReducer.class);
        thetaSummer.getConfiguration().setFloat(ThetaMapper.ALPHA_I, alphaI);
        thetaSummer.getConfiguration().setBoolean(ThetaMapper.TRAIN_COMPLEMENTARY, trainComplementary);
        /* TODO(robinanil): Enable this when thetanormalization works.
        succeeded = thetaSummer.waitForCompletion(true);
        if (!succeeded) {
          return -1;
        }*/

        //validate our model and then write it out to the official output
        getConf().setFloat(ThetaMapper.ALPHA_I, alphaI);
        NaiveBayesModel naiveBayesModel = BayesUtils.readModelFromDir(getTempPath(), getConf());
        naiveBayesModel.validate();
        naiveBayesModel.serialize(getOutputPath(), getConf());

        return 0;
    }

    private long createLabelIndex(Path labPath) throws IOException {
        long labelSize = 0;
        if (hasOption(LABELS)) {
            Iterable<String> labels = Splitter.on(",").split(getOption(LABELS));
            labelSize = BayesUtils.writeLabelIndex(getConf(), labels, labPath);
        } else if (hasOption(EXTRACT_LABELS)) {
            Iterable<Pair<Text, IntWritable>> iterable = new SequenceFileDirIterable<Text, IntWritable>(
                    getInputPath(), PathType.LIST, PathFilters.logsCRCFilter(), getConf());
            labelSize = BayesUtils.writeLabelIndex(getConf(), labPath, iterable);
        }
        return labelSize;
    }
}