Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.mapr.stats.bandit; import org.apache.mahout.common.RandomUtils; import org.apache.mahout.math.DenseMatrix; import org.apache.mahout.math.DenseVector; import org.apache.mahout.math.Matrix; import org.apache.mahout.math.Vector; import org.apache.mahout.math.function.DoubleFunction; import org.junit.Test; import java.util.Random; public class ContextualBayesBanditTest { @Test public void testConvergence() { final Random rand = RandomUtils.getRandom(); Matrix recipes = new DenseMatrix(100, 10).assign(new DoubleFunction() { @Override public double apply(double arg1) { return rand.nextDouble() < 0.2 ? 1 : 0; } }); recipes.viewColumn(9).assign(1); Vector actualWeights = new DenseVector(new double[] { 1, 0.25, -0.25, 0, 0, 0, 0, 0, 0, -1 }); Vector probs = recipes.times(actualWeights); ContextualBayesBandit banditry = new ContextualBayesBandit(recipes); for (int i = 0; i < 1000; i++) { int k = banditry.sample(); final boolean success = rand.nextDouble() < probs.get(k); banditry.train(k, success); } } }