com.luca.filipponi.tweetAnalysis.SentimentClassifier.CustomTestNaiveBayesDriver.java Source code

Java tutorial

Introduction

Here is the source code for com.luca.filipponi.tweetAnalysis.SentimentClassifier.CustomTestNaiveBayesDriver.java

Source

package com.luca.filipponi.tweetAnalysis.SentimentClassifier;

/**
 * Created by luca on 06/09/14.
 */
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.ResultAnalyzer;
import org.apache.mahout.classifier.naivebayes.*;
import org.apache.mahout.classifier.naivebayes.test.BayesTestMapper;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;

/**
 * Test the (Complementary) Naive Bayes model that was built during training
 * by running the iterating the test set and comparing it to the model
 */
public class CustomTestNaiveBayesDriver extends AbstractJob {

    public static final String COMPLEMENTARY = "class"; //b for bayes, c for complementary
    private static final Logger log = LoggerFactory.getLogger(CustomTestNaiveBayesDriver.class);
    private static final Pattern SLASH = Pattern.compile("/");

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new Configuration(), new CustomTestNaiveBayesDriver(), args);
    }

    private static void analyzeResults(Map<Integer, String> labelMap,
            SequenceFileDirIterable<Text, VectorWritable> dirIterable, ResultAnalyzer analyzer) {
        for (Pair<Text, VectorWritable> pair : dirIterable) {
            int bestIdx = Integer.MIN_VALUE;
            double bestScore = Long.MIN_VALUE;
            for (Vector.Element element : pair.getSecond().get().all()) {
                if (element.get() > bestScore) {
                    bestScore = element.get();
                    bestIdx = element.index();
                }
            }
            //
            //            if (bestIdx != Integer.MIN_VALUE) {
            //                ClassifierResult classifierResult = new ClassifierResult(labelMap.get(bestIdx), bestScore);
            //                analyzer.addInstance(pair.getFirst().toString(), classifierResult);
            //            }

        }
    }

    @Override
    public int run(String[] args) throws Exception {
        addInputOption();
        addOutputOption();
        addOption(addOption(DefaultOptionCreator.overwriteOption().create()));
        addOption("model", "m", "The path to the model built during training", true);
        addOption(
                buildOption("testComplementary", "c", "test complementary?", false, false, String.valueOf(false)));
        addOption(buildOption("runSequential", "seq", "run sequential?", false, false, String.valueOf(false)));
        addOption("labelIndex", "l", "The path to the location of the label index", true);
        Map<String, List<String>> parsedArgs = parseArguments(args);
        if (parsedArgs == null) {
            return -1;
        }
        if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
            HadoopUtil.delete(getConf(), getOutputPath());
        }

        boolean complementary = hasOption("testComplementary");
        boolean sequential = hasOption("runSequential");
        if (sequential) {
            FileSystem fs = FileSystem.get(getConf());
            NaiveBayesModel model = NaiveBayesModel.materialize(new Path(getOption("model")), getConf());
            AbstractNaiveBayesClassifier classifier;
            if (complementary) {
                classifier = new ComplementaryNaiveBayesClassifier(model);
            } else {
                classifier = new StandardNaiveBayesClassifier(model);
            }
            SequenceFile.Writer writer = new SequenceFile.Writer(fs, getConf(), getOutputPath(), Text.class,
                    VectorWritable.class);
            SequenceFile.Reader reader = new SequenceFile.Reader(fs, getInputPath(), getConf());
            Text key = new Text();
            VectorWritable vw = new VectorWritable();
            while (reader.next(key, vw)) {
                writer.append(new Text(SLASH.split(key.toString())[1]),
                        new VectorWritable(classifier.classifyFull(vw.get())));
            }
            writer.close();
            reader.close();
        } else {
            boolean succeeded = runMapReduce(parsedArgs);
            if (!succeeded) {
                return -1;
            }
        }

        //load the labels
        Map<Integer, String> labelMap = BayesUtils.readLabelIndex(getConf(), new Path(getOption("labelIndex")));

        //loop over the results and create the confusion matrix
        SequenceFileDirIterable<Text, VectorWritable> dirIterable = new SequenceFileDirIterable<Text, VectorWritable>(
                getOutputPath(), PathType.LIST, PathFilters.partFilter(), getConf());
        ResultAnalyzer analyzer = new ResultAnalyzer(labelMap.values(), "DEFAULT");
        analyzeResults(labelMap, dirIterable, analyzer);

        log.info("{} Results: {}", complementary ? "Complementary" : "Standard NB", analyzer);
        return 0;
    }

    private boolean runMapReduce(Map<String, List<String>> parsedArgs)
            throws IOException, InterruptedException, ClassNotFoundException {
        Path model = new Path(getOption("model"));
        HadoopUtil.cacheFiles(model, getConf());
        //the output key is the expected value, the output value are the scores for all the labels
        Job testJob = prepareJob(getInputPath(), getOutputPath(), SequenceFileInputFormat.class,
                BayesTestMapper.class, Text.class, VectorWritable.class, SequenceFileOutputFormat.class);
        //testJob.getConfiguration().set(LABEL_KEY, getOption("--labels"));

        //boolean complementary = parsedArgs.containsKey("testComplementary"); //always result to false as key in hash map is "--testComplementary"
        boolean complementary = hasOption("testComplementary"); //or  complementary = parsedArgs.containsKey("--testComplementary");
        testJob.getConfiguration().set(COMPLEMENTARY, String.valueOf(complementary));
        return testJob.waitForCompletion(true);
    }
}