Java tutorial
/* Copyright (C) 2012 Intel Corporation. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * For more about this software visit: * http://www.01.org/GraphBuilder */ package com.intel.hadoop.graphbuilder.idnormalize.mapreduce; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; import org.apache.hadoop.mapred.lib.MultipleOutputs; import org.apache.log4j.Logger; import com.intel.hadoop.graphbuilder.parser.FieldParser; /** * This MapReduce class partitions the dictionary output of HashIdMR based on * the hash of the rawId, the key. It can also be used to partition the * dictionary based on the hash of the newId, the value, for reverse lookup. * <p> * Input directory: list of rawid vid pair. Output directory: $outputdir/ * </p> * */ public class SortDictMR { private static final Logger LOG = Logger.getLogger(SortDictMR.class); /** * @param numChunks * number of partitions of the partitioned dictionary. * @param hashRawVid * if true, it will partition based on hash(rawId); partition by * hash(newId) otherwise. * @param vidparser * {@code FieldParser} for rawId. */ public SortDictMR(int numChunks, boolean hashRawVid, FieldParser vidparser) { this.numChunks = numChunks; this.hashRawVid = hashRawVid; this.vidparser = vidparser; } /** * @param inputpath * the path to a rawId to newId dictionary. * @param outputpath * the path of output directory. * @throws IOException */ public void run(String inputpath, String outputpath) throws IOException { JobConf conf = new JobConf(SortDictMR.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); conf.setMapOutputKeyClass(IntWritable.class); conf.setMapOutputValueClass(Text.class); conf.setMapperClass(SortDictMapper.class); conf.setReducerClass(SortDictReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); conf.setBoolean("hashRawVid", hashRawVid); conf.setInt("numChunks", numChunks); conf.set("VidParser", vidparser.getClass().getName()); String outprefix = "vidhashmap"; for (int i = 0; i < numChunks; i++) { MultipleOutputs.addNamedOutput(conf, outprefix + i, TextOutputFormat.class, Text.class, Text.class); } FileInputFormat.setInputPaths(conf, new Path(inputpath)); FileOutputFormat.setOutputPath(conf, new Path(outputpath)); LOG.info("========== Job: Partition the map of rawid -> id ==========="); LOG.info("Input = " + inputpath); LOG.info("Output = " + outputpath); LOG.info("======================================================"); if (hashRawVid) LOG.info("Partition on rawId."); else LOG.info("Partition on newId"); LOG.debug("numChunks = " + numChunks); LOG.debug("VidParser = " + vidparser.getClass().getName()); JobClient.runJob(conf); LOG.info("======================= Done ==========================\n"); } private int numChunks; private boolean hashRawVid; FieldParser vidparser; }