com.google.common.geometry.S2CellId.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.geometry.S2CellId.java

Source

/*
 * Copyright 2005 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.common.geometry;

import java.util.List;
import java.util.Locale;

/**
 * An S2CellId is a 64-bit unsigned integer that uniquely identifies a cell in
 * the S2 cell decomposition. It has the following format:
 *
 * <pre>
 * id = [face][face_pos]
 * </pre>
 *
 * face: a 3-bit number (range 0..5) encoding the cube face.
 *
 * face_pos: a 61-bit number encoding the position of the center of this cell
 * along the Hilbert curve over this face (see the Wiki pages for details).
 *
 * Sequentially increasing cell ids follow a continuous space-filling curve over
 * the entire sphere. They have the following properties:
 *  - The id of a cell at level k consists of a 3-bit face number followed by k
 * bit pairs that recursively select one of the four children of each cell. The
 * next bit is always 1, and all other bits are 0. Therefore, the level of a
 * cell is determined by the position of its lowest-numbered bit that is turned
 * on (for a cell at level k, this position is 2 * (MAX_LEVEL - k).)
 *  - The id of a parent cell is at the midpoint of the range of ids spanned by
 * its children (or by its descendants at any level).
 *
 * Leaf cells are often used to represent points on the unit sphere, and this
 * class provides methods for converting directly between these two
 * representations. For cells that represent 2D regions rather than discrete
 * point, it is better to use the S2Cell class.
 *
 *
 */
public final strictfp class S2CellId implements Comparable<S2CellId> {

    // Although only 60 bits are needed to represent the index of a leaf
    // cell, we need an extra bit in order to represent the position of
    // the center of the leaf cell along the Hilbert curve.
    public static final int FACE_BITS = 3;
    public static final int NUM_FACES = 6;
    public static final int MAX_LEVEL = 30; // Valid levels: 0..MAX_LEVEL
    public static final int POS_BITS = 2 * MAX_LEVEL + 1;
    public static final int MAX_SIZE = 1 << MAX_LEVEL;

    // Constant related to unsigned long's
    public static final long MAX_UNSIGNED = -1L; // Equivalent to 0xffffffffffffffffL

    // The following lookup tables are used to convert efficiently between an
    // (i,j) cell index and the corresponding position along the Hilbert curve.
    // "lookup_pos" maps 4 bits of "i", 4 bits of "j", and 2 bits representing the
    // orientation of the current cell into 8 bits representing the order in which
    // that subcell is visited by the Hilbert curve, plus 2 bits indicating the
    // new orientation of the Hilbert curve within that subcell. (Cell
    // orientations are represented as combination of kSwapMask and kInvertMask.)
    //
    // "lookup_ij" is an inverted table used for mapping in the opposite
    // direction.
    //
    // We also experimented with looking up 16 bits at a time (14 bits of position
    // plus 2 of orientation) but found that smaller lookup tables gave better
    // performance. (2KB fits easily in the primary cache.)

    // Values for these constants are *declared* in the *.h file. Even though
    // the declaration specifies a value for the constant, that declaration
    // is not a *definition* of storage for the value. Because the values are
    // supplied in the declaration, we don't need the values here. Failing to
    // define storage causes link errors for any code that tries to take the
    // address of one of these values.
    private static final int LOOKUP_BITS = 4;
    private static final int SWAP_MASK = 0x01;
    private static final int INVERT_MASK = 0x02;

    private static final int[] LOOKUP_POS = new int[1 << (2 * LOOKUP_BITS + 2)];
    private static final int[] LOOKUP_IJ = new int[1 << (2 * LOOKUP_BITS + 2)];

    /**
     * This is the offset required to wrap around from the beginning of the
     * Hilbert curve to the end or vice versa; see next_wrap() and prev_wrap().
     */
    private static final long WRAP_OFFSET = (long) (NUM_FACES) << POS_BITS;

    static {
        initLookupCell(0, 0, 0, 0, 0, 0);
        initLookupCell(0, 0, 0, SWAP_MASK, 0, SWAP_MASK);
        initLookupCell(0, 0, 0, INVERT_MASK, 0, INVERT_MASK);
        initLookupCell(0, 0, 0, SWAP_MASK | INVERT_MASK, 0, SWAP_MASK | INVERT_MASK);
    }

    /**
     * The id of the cell.
     */
    private final long id;

    public S2CellId(long id) {
        this.id = id;
    }

    public S2CellId() {
        this.id = 0;
    }

    /** The default constructor returns an invalid cell id. */
    public static S2CellId none() {
        return new S2CellId();
    }

    /**
     * Returns an invalid cell id guaranteed to be larger than any valid cell id.
     * Useful for creating indexes.
     */
    public static S2CellId sentinel() {
        return new S2CellId(MAX_UNSIGNED); // -1
    }

    /**
     * Return a cell given its face (range 0..5), 61-bit Hilbert curve position
     * within that face, and level (range 0..MAX_LEVEL). The given position will
     * be modified to correspond to the Hilbert curve position at the center of
     * the returned cell. This is a static function rather than a constructor in
     * order to give names to the arguments.
     */
    public static S2CellId fromFacePosLevel(int face, long pos, int level) {
        return new S2CellId((((long) face) << POS_BITS) + (pos | 1)).parent(level);
    }

    /**
     * Return the leaf cell containing the given point (a direction vector, not
     * necessarily unit length).
     */
    public static S2CellId fromPoint(S2Point p) {
        int face = S2Projections.xyzToFace(p);
        R2Vector uv = S2Projections.validFaceXyzToUv(face, p);
        int i = stToIJ(S2Projections.uvToST(uv.x()));
        int j = stToIJ(S2Projections.uvToST(uv.y()));
        return fromFaceIJ(face, i, j);
    }

    /** Return the leaf cell containing the given S2LatLng. */
    public static S2CellId fromLatLng(S2LatLng ll) {
        return fromPoint(ll.toPoint());
    }

    public S2Point toPoint() {
        return S2Point.normalize(toPointRaw());
    }

    /**
     * Return the direction vector corresponding to the center of the given cell.
     * The vector returned by ToPointRaw is not necessarily unit length.
     */
    public S2Point toPointRaw() {
        // First we compute the discrete (i,j) coordinates of a leaf cell contained
        // within the given cell. Given that cells are represented by the Hilbert
        // curve position corresponding at their center, it turns out that the cell
        // returned by ToFaceIJOrientation is always one of two leaf cells closest
        // to the center of the cell (unless the given cell is a leaf cell itself,
        // in which case there is only one possibility).
        //
        // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin,
        // jmin) be the coordinates of its lower left-hand corner, the leaf cell
        // returned by ToFaceIJOrientation() is either (imin + s/2, jmin + s/2)
        // (imin + s/2 - 1, jmin + s/2 - 1). We can distinguish these two cases by
        // looking at the low bit of "i" or "j". In the first case the low bit is
        // zero, unless s == 2 (i.e. the level just above leaf cells) in which case
        // the low bit is one.
        //
        // The following calculation converts (i,j) to the (si,ti) coordinates of
        // the cell center. (We need to multiply the coordinates by a factor of 2
        // so that the center of leaf cells can be represented exactly.)

        MutableInteger i = new MutableInteger(0);
        MutableInteger j = new MutableInteger(0);
        int face = toFaceIJOrientation(i, j, null);
        // System.out.println("i= " + i.intValue() + " j = " + j.intValue());
        int delta = isLeaf() ? 1 : (((i.intValue() ^ (((int) id) >>> 2)) & 1) != 0) ? 2 : 0;
        int si = (i.intValue() << 1) + delta - MAX_SIZE;
        int ti = (j.intValue() << 1) + delta - MAX_SIZE;
        return faceSiTiToXYZ(face, si, ti);
    }

    /** Return the S2LatLng corresponding to the center of the given cell. */
    public S2LatLng toLatLng() {
        return new S2LatLng(toPointRaw());
    }

    /** The 64-bit unique identifier for this cell. */
    public long id() {
        return id;
    }

    /** Return true if id() represents a valid cell. */
    public boolean isValid() {
        return face() < NUM_FACES && ((lowestOnBit() & (0x1555555555555555L)) != 0);
    }

    /** Which cube face this cell belongs to, in the range 0..5. */
    public int face() {
        return (int) (id >>> POS_BITS);
    }

    /**
     * The position of the cell center along the Hilbert curve over this face, in
     * the range 0..(2**kPosBits-1).
     */
    public long pos() {
        return (id & (-1L >>> FACE_BITS));
    }

    /** Return the subdivision level of the cell (range 0..MAX_LEVEL). */
    public int level() {
        // Fast path for leaf cells.
        if (isLeaf()) {
            return MAX_LEVEL;
        }
        int x = ((int) id);
        int level = -1;
        if (x != 0) {
            level += 16;
        } else {
            x = (int) (id >>> 32);
        }
        // We only need to look at even-numbered bits to determine the
        // level of a valid cell id.
        x &= -x; // Get lowest bit.
        if ((x & 0x00005555) != 0) {
            level += 8;
        }
        if ((x & 0x00550055) != 0) {
            level += 4;
        }
        if ((x & 0x05050505) != 0) {
            level += 2;
        }
        if ((x & 0x11111111) != 0) {
            level += 1;
        }
        // assert (level >= 0 && level <= MAX_LEVEL);
        return level;
    }

    /**
     * Return true if this is a leaf cell (more efficient than checking whether
     * level() == MAX_LEVEL).
     */
    public boolean isLeaf() {
        return ((int) id & 1) != 0;
    }

    /**
     * Return true if this is a top-level face cell (more efficient than checking
     * whether level() == 0).
     */
    public boolean isFace() {
        return (id & (lowestOnBitForLevel(0) - 1)) == 0;
    }

    /**
     * Return the child position (0..3) of this cell's ancestor at the given
     * level, relative to its parent. The argument should be in the range
     * 1..MAX_LEVEL. For example, child_position(1) returns the position of this
     * cell's level-1 ancestor within its top-level face cell.
     */
    public int childPosition(int level) {
        return (int) (id >>> (2 * (MAX_LEVEL - level) + 1)) & 3;
    }

    // Methods that return the range of cell ids that are contained
    // within this cell (including itself). The range is *inclusive*
    // (i.e. test using >= and <=) and the return values of both
    // methods are valid leaf cell ids.
    //
    // These methods should not be used for iteration. If you want to
    // iterate through all the leaf cells, call child_begin(MAX_LEVEL) and
    // child_end(MAX_LEVEL) instead.
    //
    // It would in fact be error-prone to define a range_end() method,
    // because (range_max().id() + 1) is not always a valid cell id, and the
    // iterator would need to be tested using "<" rather that the usual "!=".
    public S2CellId rangeMin() {
        return new S2CellId(id - (lowestOnBit() - 1));
    }

    public S2CellId rangeMax() {
        return new S2CellId(id + (lowestOnBit() - 1));
    }

    /** Return true if the given cell is contained within this one. */
    public boolean contains(S2CellId other) {
        // assert (isValid() && other.isValid());
        return other.greaterOrEquals(rangeMin()) && other.lessOrEquals(rangeMax());
    }

    /** Return true if the given cell intersects this one. */
    public boolean intersects(S2CellId other) {
        // assert (isValid() && other.isValid());
        return other.rangeMin().lessOrEquals(rangeMax()) && other.rangeMax().greaterOrEquals(rangeMin());
    }

    public S2CellId parent() {
        // assert (isValid() && level() > 0);
        long newLsb = lowestOnBit() << 2;
        return new S2CellId((id & -newLsb) | newLsb);
    }

    /**
     * Return the cell at the previous level or at the given level (which must be
     * less than or equal to the current level).
     */
    public S2CellId parent(int level) {
        // assert (isValid() && level >= 0 && level <= this.level());
        long newLsb = lowestOnBitForLevel(level);
        return new S2CellId((id & -newLsb) | newLsb);
    }

    public S2CellId childBegin() {
        // assert (isValid() && level() < MAX_LEVEL);
        long oldLsb = lowestOnBit();
        return new S2CellId(id - oldLsb + (oldLsb >>> 2));
    }

    public S2CellId childBegin(int level) {
        // assert (isValid() && level >= this.level() && level <= MAX_LEVEL);
        return new S2CellId(id - lowestOnBit() + lowestOnBitForLevel(level));
    }

    public S2CellId childEnd() {
        // assert (isValid() && level() < MAX_LEVEL);
        long oldLsb = lowestOnBit();
        return new S2CellId(id + oldLsb + (oldLsb >>> 2));
    }

    public S2CellId childEnd(int level) {
        // assert (isValid() && level >= this.level() && level <= MAX_LEVEL);
        return new S2CellId(id + lowestOnBit() + lowestOnBitForLevel(level));
    }

    // Iterator-style methods for traversing the immediate children of a cell or
    // all of the children at a given level (greater than or equal to the current
    // level). Note that the end value is exclusive, just like standard STL
    // iterators, and may not even be a valid cell id. You should iterate using
    // code like this:
    //
    // for(S2CellId c = id.childBegin(); !c.equals(id.childEnd()); c = c.next())
    // ...
    //
    // The convention for advancing the iterator is "c = c.next()", so be sure
    // to use 'equals()' in the loop guard, or compare 64-bit cell id's,
    // rather than "c != id.childEnd()".

    /**
     * Return the next cell at the same level along the Hilbert curve. Works
     * correctly when advancing from one face to the next, but does *not* wrap
     * around from the last face to the first or vice versa.
     */
    public S2CellId next() {
        return new S2CellId(id + (lowestOnBit() << 1));
    }

    /**
     * Return the previous cell at the same level along the Hilbert curve. Works
     * correctly when advancing from one face to the next, but does *not* wrap
     * around from the last face to the first or vice versa.
     */
    public S2CellId prev() {
        return new S2CellId(id - (lowestOnBit() << 1));
    }

    /**
     * Like next(), but wraps around from the last face to the first and vice
     * versa. Should *not* be used for iteration in conjunction with
     * child_begin(), child_end(), Begin(), or End().
     */
    public S2CellId nextWrap() {
        S2CellId n = next();
        if (unsignedLongLessThan(n.id, WRAP_OFFSET)) {
            return n;
        }
        return new S2CellId(n.id - WRAP_OFFSET);
    }

    /**
     * Like prev(), but wraps around from the last face to the first and vice
     * versa. Should *not* be used for iteration in conjunction with
     * child_begin(), child_end(), Begin(), or End().
     */
    public S2CellId prevWrap() {
        S2CellId p = prev();
        if (p.id < WRAP_OFFSET) {
            return p;
        }
        return new S2CellId(p.id + WRAP_OFFSET);
    }

    public static S2CellId begin(int level) {
        return fromFacePosLevel(0, 0, 0).childBegin(level);
    }

    public static S2CellId end(int level) {
        return fromFacePosLevel(5, 0, 0).childEnd(level);
    }

    /**
     * Decodes the cell id from a compact text string suitable for display or
     * indexing. Cells at lower levels (i.e. larger cells) are encoded into
     * fewer characters. The maximum token length is 16.
     *
     * @param token the token to decode
     * @return the S2CellId for that token
     * @throws NumberFormatException if the token is not formatted correctly
     */
    public static S2CellId fromToken(String token) {
        if (token == null) {
            throw new NumberFormatException("Null string in S2CellId.fromToken");
        }
        if (token.length() == 0) {
            throw new NumberFormatException("Empty string in S2CellId.fromToken");
        }
        if (token.length() > 16 || "X".equals(token)) {
            return none();
        }

        long value = 0;
        for (int pos = 0; pos < 16; pos++) {
            int digit = 0;
            if (pos < token.length()) {
                digit = Character.digit(token.charAt(pos), 16);
                if (digit == -1) {
                    throw new NumberFormatException(token);
                }
                if (overflowInParse(value, digit)) {
                    throw new NumberFormatException("Too large for unsigned long: " + token);
                }
            }
            value = (value * 16) + digit;
        }

        return new S2CellId(value);
    }

    /**
     * Encodes the cell id to compact text strings suitable for display or indexing.
     * Cells at lower levels (i.e. larger cells) are encoded into fewer characters.
     * The maximum token length is 16.
     *
     * Simple implementation: convert the id to hex and strip trailing zeros. We
     * could use base-32 or base-64, but assuming the cells used for indexing
     * regions are at least 100 meters across (level 16 or less), the savings
     * would be at most 3 bytes (9 bytes hex vs. 6 bytes base-64).
     *
     * @return the encoded cell id
     */
    public String toToken() {
        if (id == 0) {
            return "X";
        }

        String hex = Long.toHexString(id).toLowerCase(Locale.ENGLISH);
        StringBuilder sb = new StringBuilder(16);
        for (int i = hex.length(); i < 16; i++) {
            sb.append('0');
        }
        sb.append(hex);
        for (int len = 16; len > 0; len--) {
            if (sb.charAt(len - 1) != '0') {
                return sb.substring(0, len);
            }
        }

        throw new RuntimeException("Shouldn't make it here");
    }

    /**
     * Returns true if (current * 10) + digit is a number too large to be
     * represented by an unsigned long.  This is useful for detecting overflow
     * while parsing a string representation of a number.
     */
    private static boolean overflowInParse(long current, int digit) {
        return overflowInParse(current, digit, 10);
    }

    /**
     * Returns true if (current * radix) + digit is a number too large to be
     * represented by an unsigned long.  This is useful for detecting overflow
     * while parsing a string representation of a number.
     * Does not verify whether supplied radix is valid, passing an invalid radix
     * will give undefined results or an ArrayIndexOutOfBoundsException.
     */
    private static boolean overflowInParse(long current, int digit, int radix) {
        if (current >= 0) {
            if (current < maxValueDivs[radix]) {
                return false;
            }
            if (current > maxValueDivs[radix]) {
                return true;
            }
            // current == maxValueDivs[radix]
            return (digit > maxValueMods[radix]);
        }

        // current < 0: high bit is set
        return true;
    }

    // calculated as 0xffffffffffffffff / radix
    private static final long maxValueDivs[] = { 0, 0, // 0 and 1 are invalid
            9223372036854775807L, 6148914691236517205L, 4611686018427387903L, // 2-4
            3689348814741910323L, 3074457345618258602L, 2635249153387078802L, // 5-7
            2305843009213693951L, 2049638230412172401L, 1844674407370955161L, // 8-10
            1676976733973595601L, 1537228672809129301L, 1418980313362273201L, // 11-13
            1317624576693539401L, 1229782938247303441L, 1152921504606846975L, // 14-16
            1085102592571150095L, 1024819115206086200L, 970881267037344821L, // 17-19
            922337203685477580L, 878416384462359600L, 838488366986797800L, // 20-22
            802032351030850070L, 768614336404564650L, 737869762948382064L, // 23-25
            709490156681136600L, 683212743470724133L, 658812288346769700L, // 26-28
            636094623231363848L, 614891469123651720L, 595056260442243600L, // 29-31
            576460752303423487L, 558992244657865200L, 542551296285575047L, // 32-34
            527049830677415760L, 512409557603043100L }; // 35-36

    // calculated as 0xffffffffffffffff % radix
    private static final int maxValueMods[] = { 0, 0, // 0 and 1 are invalid
            1, 0, 3, 0, 3, 1, 7, 6, 5, 4, 3, 2, 1, 0, 15, 0, 15, 16, 15, 15, // 2-21
            15, 5, 15, 15, 15, 24, 15, 23, 15, 15, 31, 15, 17, 15, 15 }; // 22-36

    /**
     * Return the four cells that are adjacent across the cell's four edges.
     * Neighbors are returned in the order defined by S2Cell::GetEdge. All
     * neighbors are guaranteed to be distinct.
     */
    public void getEdgeNeighbors(S2CellId neighbors[]) {

        MutableInteger i = new MutableInteger(0);
        MutableInteger j = new MutableInteger(0);

        int level = this.level();
        int size = 1 << (MAX_LEVEL - level);
        int face = toFaceIJOrientation(i, j, null);

        // Edges 0, 1, 2, 3 are in the S, E, N, W directions.
        neighbors[0] = fromFaceIJSame(face, i.intValue(), j.intValue() - size, j.intValue() - size >= 0)
                .parent(level);
        neighbors[1] = fromFaceIJSame(face, i.intValue() + size, j.intValue(), i.intValue() + size < MAX_SIZE)
                .parent(level);
        neighbors[2] = fromFaceIJSame(face, i.intValue(), j.intValue() + size, j.intValue() + size < MAX_SIZE)
                .parent(level);
        neighbors[3] = fromFaceIJSame(face, i.intValue() - size, j.intValue(), i.intValue() - size >= 0)
                .parent(level);
    }

    /**
     * Return the neighbors of closest vertex to this cell at the given level, by
     * appending them to "output". Normally there are four neighbors, but the
     * closest vertex may only have three neighbors if it is one of the 8 cube
     * vertices.
     *
     * Requires: level < this.evel(), so that we can determine which vertex is
     * closest (in particular, level == MAX_LEVEL is not allowed).
     */
    public void getVertexNeighbors(int level, List<S2CellId> output) {
        // "level" must be strictly less than this cell's level so that we can
        // determine which vertex this cell is closest to.
        // assert (level < this.level());
        MutableInteger i = new MutableInteger(0);
        MutableInteger j = new MutableInteger(0);
        int face = toFaceIJOrientation(i, j, null);

        // Determine the i- and j-offsets to the closest neighboring cell in each
        // direction. This involves looking at the next bit of "i" and "j" to
        // determine which quadrant of this->parent(level) this cell lies in.
        int halfsize = 1 << (MAX_LEVEL - (level + 1));
        int size = halfsize << 1;
        boolean isame, jsame;
        int ioffset, joffset;
        if ((i.intValue() & halfsize) != 0) {
            ioffset = size;
            isame = (i.intValue() + size) < MAX_SIZE;
        } else {
            ioffset = -size;
            isame = (i.intValue() - size) >= 0;
        }
        if ((j.intValue() & halfsize) != 0) {
            joffset = size;
            jsame = (j.intValue() + size) < MAX_SIZE;
        } else {
            joffset = -size;
            jsame = (j.intValue() - size) >= 0;
        }

        output.add(parent(level));
        output.add(fromFaceIJSame(face, i.intValue() + ioffset, j.intValue(), isame).parent(level));
        output.add(fromFaceIJSame(face, i.intValue(), j.intValue() + joffset, jsame).parent(level));
        // If i- and j- edge neighbors are *both* on a different face, then this
        // vertex only has three neighbors (it is one of the 8 cube vertices).
        if (isame || jsame) {
            output.add(fromFaceIJSame(face, i.intValue() + ioffset, j.intValue() + joffset, isame && jsame)
                    .parent(level));
        }
    }

    /**
     * Append all neighbors of this cell at the given level to "output". Two cells
     * X and Y are neighbors if their boundaries intersect but their interiors do
     * not. In particular, two cells that intersect at a single point are
     * neighbors.
     *
     * Requires: nbr_level >= this->level(). Note that for cells adjacent to a
     * face vertex, the same neighbor may be appended more than once.
     */
    public void getAllNeighbors(int nbrLevel, List<S2CellId> output) {
        MutableInteger i = new MutableInteger(0);
        MutableInteger j = new MutableInteger(0);

        int face = toFaceIJOrientation(i, j, null);

        // Find the coordinates of the lower left-hand leaf cell. We need to
        // normalize (i,j) to a known position within the cell because nbr_level
        // may be larger than this cell's level.
        int size = 1 << (MAX_LEVEL - level());
        i.setValue(i.intValue() & -size);
        j.setValue(j.intValue() & -size);

        int nbrSize = 1 << (MAX_LEVEL - nbrLevel);
        // assert (nbrSize <= size);

        // We compute the N-S, E-W, and diagonal neighbors in one pass.
        // The loop test is at the end of the loop to avoid 32-bit overflow.
        for (int k = -nbrSize;; k += nbrSize) {
            boolean sameFace;
            if (k < 0) {
                sameFace = (j.intValue() + k >= 0);
            } else if (k >= size) {
                sameFace = (j.intValue() + k < MAX_SIZE);
            } else {
                sameFace = true;
                // North and South neighbors.
                output.add(fromFaceIJSame(face, i.intValue() + k, j.intValue() - nbrSize, j.intValue() - size >= 0)
                        .parent(nbrLevel));
                output.add(
                        fromFaceIJSame(face, i.intValue() + k, j.intValue() + size, j.intValue() + size < MAX_SIZE)
                                .parent(nbrLevel));
            }
            // East, West, and Diagonal neighbors.
            output.add(fromFaceIJSame(face, i.intValue() - nbrSize, j.intValue() + k,
                    sameFace && i.intValue() - size >= 0).parent(nbrLevel));
            output.add(fromFaceIJSame(face, i.intValue() + size, j.intValue() + k,
                    sameFace && i.intValue() + size < MAX_SIZE).parent(nbrLevel));
            if (k >= size) {
                break;
            }
        }
    }

    // ///////////////////////////////////////////////////////////////////
    // Low-level methods.

    /**
     * Return a leaf cell given its cube face (range 0..5) and i- and
     * j-coordinates (see s2.h).
     */
    public static S2CellId fromFaceIJ(int face, int i, int j) {
        // Optimization notes:
        // - Non-overlapping bit fields can be combined with either "+" or "|".
        // Generally "+" seems to produce better code, but not always.

        // gcc doesn't have very good code generation for 64-bit operations.
        // We optimize this by computing the result as two 32-bit integers
        // and combining them at the end. Declaring the result as an array
        // rather than local variables helps the compiler to do a better job
        // of register allocation as well. Note that the two 32-bits halves
        // get shifted one bit to the left when they are combined.
        long n[] = { 0, face << (POS_BITS - 33) };

        // Alternating faces have opposite Hilbert curve orientations; this
        // is necessary in order for all faces to have a right-handed
        // coordinate system.
        int bits = (face & SWAP_MASK);

        // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert
        // curve position. The lookup table transforms a 10-bit key of the form
        // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the
        // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and
        // Hilbert curve orientation respectively.

        for (int k = 7; k >= 0; --k) {
            bits = getBits(n, i, j, k, bits);
        }

        S2CellId s = new S2CellId((((n[1] << 32) + n[0]) << 1) + 1);
        return s;
    }

    private static int getBits(long[] n, int i, int j, int k, int bits) {
        final int mask = (1 << LOOKUP_BITS) - 1;
        bits += (((i >> (k * LOOKUP_BITS)) & mask) << (LOOKUP_BITS + 2));
        bits += (((j >> (k * LOOKUP_BITS)) & mask) << 2);
        bits = LOOKUP_POS[bits];
        n[k >> 2] |= ((((long) bits) >> 2) << ((k & 3) * 2 * LOOKUP_BITS));
        bits &= (SWAP_MASK | INVERT_MASK);
        return bits;
    }

    /**
     * Return the (face, i, j) coordinates for the leaf cell corresponding to this
     * cell id. Since cells are represented by the Hilbert curve position at the
     * center of the cell, the returned (i,j) for non-leaf cells will be a leaf
     * cell adjacent to the cell center. If "orientation" is non-NULL, also return
     * the Hilbert curve orientation for the current cell.
     */
    public int toFaceIJOrientation(MutableInteger pi, MutableInteger pj, MutableInteger orientation) {
        // System.out.println("Entering toFaceIjorientation");
        int face = this.face();
        int bits = (face & SWAP_MASK);

        // System.out.println("face = " + face + " bits = " + bits);

        // Each iteration maps 8 bits of the Hilbert curve position into
        // 4 bits of "i" and "j". The lookup table transforms a key of the
        // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the
        // letters [ijpo] represents bits of "i", "j", the Hilbert curve
        // position, and the Hilbert curve orientation respectively.
        //
        // On the first iteration we need to be careful to clear out the bits
        // representing the cube face.
        for (int k = 7; k >= 0; --k) {
            bits = getBits1(pi, pj, k, bits);
            // System.out.println("pi = " + pi + " pj= " + pj + " bits = " + bits);
        }

        if (orientation != null) {
            // The position of a non-leaf cell at level "n" consists of a prefix of
            // 2*n bits that identifies the cell, followed by a suffix of
            // 2*(MAX_LEVEL-n)+1 bits of the form 10*. If n==MAX_LEVEL, the suffix is
            // just "1" and has no effect. Otherwise, it consists of "10", followed
            // by (MAX_LEVEL-n-1) repetitions of "00", followed by "0". The "10" has
            // no effect, while each occurrence of "00" has the effect of reversing
            // the kSwapMask bit.
            // assert (S2.POS_TO_ORIENTATION[2] == 0);
            // assert (S2.POS_TO_ORIENTATION[0] == S2.SWAP_MASK);
            if ((lowestOnBit() & 0x1111111111111110L) != 0) {
                bits ^= S2.SWAP_MASK;
            }
            orientation.setValue(bits);
        }
        return face;
    }

    private int getBits1(MutableInteger i, MutableInteger j, int k, int bits) {
        final int nbits = (k == 7) ? (MAX_LEVEL - 7 * LOOKUP_BITS) : LOOKUP_BITS;

        bits += (((int) (id >>> (k * 2 * LOOKUP_BITS + 1)) & ((1 << (2 * nbits)) - 1))) << 2;
        /*
         * System.out.println("id is: " + id_); System.out.println("bits is " +
         * bits); System.out.println("lookup_ij[bits] is " + lookup_ij[bits]);
         */
        bits = LOOKUP_IJ[bits];
        i.setValue(i.intValue() + ((bits >> (LOOKUP_BITS + 2)) << (k * LOOKUP_BITS)));
        /*
         * System.out.println("left is " + ((bits >> 2) & ((1 << kLookupBits) -
         * 1))); System.out.println("right is " + (k * kLookupBits));
         * System.out.println("j is: " + j.intValue()); System.out.println("addition
         * is: " + ((((bits >> 2) & ((1 << kLookupBits) - 1))) << (k *
         * kLookupBits)));
         */
        j.setValue(j.intValue() + ((((bits >> 2) & ((1 << LOOKUP_BITS) - 1))) << (k * LOOKUP_BITS)));
        bits &= (SWAP_MASK | INVERT_MASK);
        return bits;
    }

    /** Return the lowest-numbered bit that is on for cells at the given level. */
    public long lowestOnBit() {
        return id & -id;
    }

    /**
     * Return the lowest-numbered bit that is on for this cell id, which is equal
     * to (uint64(1) << (2 * (MAX_LEVEL - level))). So for example, a.lsb() <=
     * b.lsb() if and only if a.level() >= b.level(), but the first test is more
     * efficient.
     */
    public static long lowestOnBitForLevel(int level) {
        return 1L << (2 * (MAX_LEVEL - level));
    }

    /**
     * Return the i- or j-index of the leaf cell containing the given s- or
     * t-value.
     */
    private static int stToIJ(double s) {
        // Converting from floating-point to integers via static_cast is very slow
        // on Intel processors because it requires changing the rounding mode.
        // Rounding to the nearest integer using FastIntRound() is much faster.

        final int m = MAX_SIZE / 2; // scaling multiplier
        return (int) Math.max(0, Math.min(2 * m - 1, Math.round(m * s + (m - 0.5))));
    }

    /**
     * Convert (face, si, ti) coordinates (see s2.h) to a direction vector (not
     * necessarily unit length).
     */
    private static S2Point faceSiTiToXYZ(int face, int si, int ti) {
        final double kScale = 1.0 / MAX_SIZE;
        double u = S2Projections.stToUV(kScale * si);
        double v = S2Projections.stToUV(kScale * ti);
        return S2Projections.faceUvToXyz(face, u, v);
    }

    /**
     * Given (i, j) coordinates that may be out of bounds, normalize them by
     * returning the corresponding neighbor cell on an adjacent face.
     */
    private static S2CellId fromFaceIJWrap(int face, int i, int j) {
        // Convert i and j to the coordinates of a leaf cell just beyond the
        // boundary of this face. This prevents 32-bit overflow in the case
        // of finding the neighbors of a face cell, and also means that we
        // don't need to worry about the distinction between (s,t) and (u,v).
        i = Math.max(-1, Math.min(MAX_SIZE, i));
        j = Math.max(-1, Math.min(MAX_SIZE, j));

        // Find the (s,t) coordinates corresponding to (i,j). At least one
        // of these coordinates will be just outside the range [0, 1].
        final double kScale = 1.0 / MAX_SIZE;
        double s = kScale * ((i << 1) + 1 - MAX_SIZE);
        double t = kScale * ((j << 1) + 1 - MAX_SIZE);

        // Find the leaf cell coordinates on the adjacent face, and convert
        // them to a cell id at the appropriate level.
        S2Point p = S2Projections.faceUvToXyz(face, s, t);
        face = S2Projections.xyzToFace(p);
        R2Vector st = S2Projections.validFaceXyzToUv(face, p);
        return fromFaceIJ(face, stToIJ(st.x()), stToIJ(st.y()));
    }

    /**
     * Public helper function that calls FromFaceIJ if sameFace is true, or
     * FromFaceIJWrap if sameFace is false.
     */
    public static S2CellId fromFaceIJSame(int face, int i, int j, boolean sameFace) {
        if (sameFace) {
            return S2CellId.fromFaceIJ(face, i, j);
        } else {
            return S2CellId.fromFaceIJWrap(face, i, j);
        }
    }

    @Override
    public boolean equals(Object that) {
        if (!(that instanceof S2CellId)) {
            return false;
        }
        S2CellId x = (S2CellId) that;
        return id() == x.id();
    }

    /**
     * Returns true if x1 < x2, when both values are treated as unsigned.
     */
    public static boolean unsignedLongLessThan(long x1, long x2) {
        return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE);
    }

    /**
     * Returns true if x1 > x2, when both values are treated as unsigned.
     */
    public static boolean unsignedLongGreaterThan(long x1, long x2) {
        return (x1 + Long.MIN_VALUE) > (x2 + Long.MIN_VALUE);
    }

    public boolean lessThan(S2CellId x) {
        return unsignedLongLessThan(id, x.id);
    }

    public boolean greaterThan(S2CellId x) {
        return unsignedLongGreaterThan(id, x.id);
    }

    public boolean lessOrEquals(S2CellId x) {
        return unsignedLongLessThan(id, x.id) || id == x.id;
    }

    public boolean greaterOrEquals(S2CellId x) {
        return unsignedLongGreaterThan(id, x.id) || id == x.id;
    }

    @Override
    public int hashCode() {
        return (int) ((id >>> 32) + id);
    }

    @Override
    public String toString() {
        return "(face=" + face() + ", pos=" + Long.toHexString(pos()) + ", level=" + level() + ")";
    }

    private static void initLookupCell(int level, int i, int j, int origOrientation, int pos, int orientation) {
        if (level == LOOKUP_BITS) {
            int ij = (i << LOOKUP_BITS) + j;
            LOOKUP_POS[(ij << 2) + origOrientation] = (pos << 2) + orientation;
            LOOKUP_IJ[(pos << 2) + origOrientation] = (ij << 2) + orientation;
        } else {
            level++;
            i <<= 1;
            j <<= 1;
            pos <<= 2;
            // Initialize each sub-cell recursively.
            for (int subPos = 0; subPos < 4; subPos++) {
                int ij = S2.posToIJ(orientation, subPos);
                int orientationMask = S2.posToOrientation(subPos);
                initLookupCell(level, i + (ij >>> 1), j + (ij & 1), origOrientation, pos + subPos,
                        orientation ^ orientationMask);
            }
        }
    }

    @Override
    public int compareTo(S2CellId that) {
        return unsignedLongLessThan(this.id, that.id) ? -1 : unsignedLongGreaterThan(this.id, that.id) ? 1 : 0;
    }
}