com.google.common.collect.Multimaps.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.collect.Multimaps.java

Source

/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Function;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.base.Supplier;
import com.google.common.collect.Maps.EntryTransformer;
import com.google.j2objc.annotations.Weak;
import com.google.j2objc.annotations.WeakOuter;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;

import javax.annotation.CheckReturnValue;
import javax.annotation.Nullable;

/**
 * Provides static methods acting on or generating a {@code Multimap}.
 *
 * <p>See the Guava User Guide article on <a href=
 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#multimaps">
 * {@code Multimaps}</a>.
 *
 * @author Jared Levy
 * @author Robert Konigsberg
 * @author Mike Bostock
 * @author Louis Wasserman
 * @since 2.0
 */
@GwtCompatible(emulated = true)
public final class Multimaps {
    private Multimaps() {
    }

    /**
     * Creates a new {@code Multimap} backed by {@code map}, whose internal value
     * collections are generated by {@code factory}.
     *
     * <b>Warning: do not use</b> this method when the collections returned by
     * {@code factory} implement either {@link List} or {@code Set}! Use the more
     * specific method {@link #newListMultimap}, {@link #newSetMultimap} or {@link
     * #newSortedSetMultimap} instead, to avoid very surprising behavior from
     * {@link Multimap#equals}.
     *
     * <p>The {@code factory}-generated and {@code map} classes determine the
     * multimap iteration order. They also specify the behavior of the
     * {@code equals}, {@code hashCode}, and {@code toString} methods for the
     * multimap and its returned views. However, the multimap's {@code get}
     * method returns instances of a different class than {@code factory.get()}
     * does.
     *
     * <p>The multimap is serializable if {@code map}, {@code factory}, the
     * collections generated by {@code factory}, and the multimap contents are all
     * serializable.
     *
     * <p>The multimap is not threadsafe when any concurrent operations update the
     * multimap, even if {@code map} and the instances generated by
     * {@code factory} are. Concurrent read operations will work correctly. To
     * allow concurrent update operations, wrap the multimap with a call to
     * {@link #synchronizedMultimap}.
     *
     * <p>Call this method only when the simpler methods
     * {@link ArrayListMultimap#create()}, {@link HashMultimap#create()},
     * {@link LinkedHashMultimap#create()}, {@link LinkedListMultimap#create()},
     * {@link TreeMultimap#create()}, and
     * {@link TreeMultimap#create(Comparator, Comparator)} won't suffice.
     *
     * <p>Note: the multimap assumes complete ownership over of {@code map} and
     * the collections returned by {@code factory}. Those objects should not be
     * manually updated and they should not use soft, weak, or phantom references.
     *
     * @param map place to store the mapping from each key to its corresponding
     *     values
     * @param factory supplier of new, empty collections that will each hold all
     *     values for a given key
     * @throws IllegalArgumentException if {@code map} is not empty
     */
    public static <K, V> Multimap<K, V> newMultimap(Map<K, Collection<V>> map,
            final Supplier<? extends Collection<V>> factory) {
        return new CustomMultimap<K, V>(map, factory);
    }

    private static class CustomMultimap<K, V> extends AbstractMapBasedMultimap<K, V> {
        transient Supplier<? extends Collection<V>> factory;

        CustomMultimap(Map<K, Collection<V>> map, Supplier<? extends Collection<V>> factory) {
            super(map);
            this.factory = checkNotNull(factory);
        }

        @Override
        protected Collection<V> createCollection() {
            return factory.get();
        }

        // can't use Serialization writeMultimap and populateMultimap methods since
        // there's no way to generate the empty backing map.

        /** @serialData the factory and the backing map */
        @GwtIncompatible("java.io.ObjectOutputStream")
        private void writeObject(ObjectOutputStream stream) throws IOException {
            stream.defaultWriteObject();
            stream.writeObject(factory);
            stream.writeObject(backingMap());
        }

        @GwtIncompatible("java.io.ObjectInputStream")
        @SuppressWarnings("unchecked") // reading data stored by writeObject
        private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
            stream.defaultReadObject();
            factory = (Supplier<? extends Collection<V>>) stream.readObject();
            Map<K, Collection<V>> map = (Map<K, Collection<V>>) stream.readObject();
            setMap(map);
        }

        @GwtIncompatible("java serialization not supported")
        private static final long serialVersionUID = 0;
    }

    /**
     * Creates a new {@code ListMultimap} that uses the provided map and factory.
     * It can generate a multimap based on arbitrary {@link Map} and {@link List}
     * classes.
     *
     * <p>The {@code factory}-generated and {@code map} classes determine the
     * multimap iteration order. They also specify the behavior of the
     * {@code equals}, {@code hashCode}, and {@code toString} methods for the
     * multimap and its returned views. The multimap's {@code get}, {@code
     * removeAll}, and {@code replaceValues} methods return {@code RandomAccess}
     * lists if the factory does. However, the multimap's {@code get} method
     * returns instances of a different class than does {@code factory.get()}.
     *
     * <p>The multimap is serializable if {@code map}, {@code factory}, the
     * lists generated by {@code factory}, and the multimap contents are all
     * serializable.
     *
     * <p>The multimap is not threadsafe when any concurrent operations update the
     * multimap, even if {@code map} and the instances generated by
     * {@code factory} are. Concurrent read operations will work correctly. To
     * allow concurrent update operations, wrap the multimap with a call to
     * {@link #synchronizedListMultimap}.
     *
     * <p>Call this method only when the simpler methods
     * {@link ArrayListMultimap#create()} and {@link LinkedListMultimap#create()}
     * won't suffice.
     *
     * <p>Note: the multimap assumes complete ownership over of {@code map} and
     * the lists returned by {@code factory}. Those objects should not be manually
     * updated, they should be empty when provided, and they should not use soft,
     * weak, or phantom references.
     *
     * @param map place to store the mapping from each key to its corresponding
     *     values
     * @param factory supplier of new, empty lists that will each hold all values
     *     for a given key
     * @throws IllegalArgumentException if {@code map} is not empty
     */
    public static <K, V> ListMultimap<K, V> newListMultimap(Map<K, Collection<V>> map,
            final Supplier<? extends List<V>> factory) {
        return new CustomListMultimap<K, V>(map, factory);
    }

    private static class CustomListMultimap<K, V> extends AbstractListMultimap<K, V> {
        transient Supplier<? extends List<V>> factory;

        CustomListMultimap(Map<K, Collection<V>> map, Supplier<? extends List<V>> factory) {
            super(map);
            this.factory = checkNotNull(factory);
        }

        @Override
        protected List<V> createCollection() {
            return factory.get();
        }

        /** @serialData the factory and the backing map */
        @GwtIncompatible("java.io.ObjectOutputStream")
        private void writeObject(ObjectOutputStream stream) throws IOException {
            stream.defaultWriteObject();
            stream.writeObject(factory);
            stream.writeObject(backingMap());
        }

        @GwtIncompatible("java.io.ObjectInputStream")
        @SuppressWarnings("unchecked") // reading data stored by writeObject
        private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
            stream.defaultReadObject();
            factory = (Supplier<? extends List<V>>) stream.readObject();
            Map<K, Collection<V>> map = (Map<K, Collection<V>>) stream.readObject();
            setMap(map);
        }

        @GwtIncompatible("java serialization not supported")
        private static final long serialVersionUID = 0;
    }

    /**
     * Creates a new {@code SetMultimap} that uses the provided map and factory.
     * It can generate a multimap based on arbitrary {@link Map} and {@link Set}
     * classes.
     *
     * <p>The {@code factory}-generated and {@code map} classes determine the
     * multimap iteration order. They also specify the behavior of the
     * {@code equals}, {@code hashCode}, and {@code toString} methods for the
     * multimap and its returned views. However, the multimap's {@code get}
     * method returns instances of a different class than {@code factory.get()}
     * does.
     *
     * <p>The multimap is serializable if {@code map}, {@code factory}, the
     * sets generated by {@code factory}, and the multimap contents are all
     * serializable.
     *
     * <p>The multimap is not threadsafe when any concurrent operations update the
     * multimap, even if {@code map} and the instances generated by
     * {@code factory} are. Concurrent read operations will work correctly. To
     * allow concurrent update operations, wrap the multimap with a call to
     * {@link #synchronizedSetMultimap}.
     *
     * <p>Call this method only when the simpler methods
     * {@link HashMultimap#create()}, {@link LinkedHashMultimap#create()},
     * {@link TreeMultimap#create()}, and
     * {@link TreeMultimap#create(Comparator, Comparator)} won't suffice.
     *
     * <p>Note: the multimap assumes complete ownership over of {@code map} and
     * the sets returned by {@code factory}. Those objects should not be manually
     * updated and they should not use soft, weak, or phantom references.
     *
     * @param map place to store the mapping from each key to its corresponding
     *     values
     * @param factory supplier of new, empty sets that will each hold all values
     *     for a given key
     * @throws IllegalArgumentException if {@code map} is not empty
     */
    public static <K, V> SetMultimap<K, V> newSetMultimap(Map<K, Collection<V>> map,
            final Supplier<? extends Set<V>> factory) {
        return new CustomSetMultimap<K, V>(map, factory);
    }

    private static class CustomSetMultimap<K, V> extends AbstractSetMultimap<K, V> {
        transient Supplier<? extends Set<V>> factory;

        CustomSetMultimap(Map<K, Collection<V>> map, Supplier<? extends Set<V>> factory) {
            super(map);
            this.factory = checkNotNull(factory);
        }

        @Override
        protected Set<V> createCollection() {
            return factory.get();
        }

        /** @serialData the factory and the backing map */
        @GwtIncompatible("java.io.ObjectOutputStream")
        private void writeObject(ObjectOutputStream stream) throws IOException {
            stream.defaultWriteObject();
            stream.writeObject(factory);
            stream.writeObject(backingMap());
        }

        @GwtIncompatible("java.io.ObjectInputStream")
        @SuppressWarnings("unchecked") // reading data stored by writeObject
        private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
            stream.defaultReadObject();
            factory = (Supplier<? extends Set<V>>) stream.readObject();
            Map<K, Collection<V>> map = (Map<K, Collection<V>>) stream.readObject();
            setMap(map);
        }

        @GwtIncompatible("not needed in emulated source")
        private static final long serialVersionUID = 0;
    }

    /**
     * Creates a new {@code SortedSetMultimap} that uses the provided map and
     * factory. It can generate a multimap based on arbitrary {@link Map} and
     * {@link SortedSet} classes.
     *
     * <p>The {@code factory}-generated and {@code map} classes determine the
     * multimap iteration order. They also specify the behavior of the
     * {@code equals}, {@code hashCode}, and {@code toString} methods for the
     * multimap and its returned views. However, the multimap's {@code get}
     * method returns instances of a different class than {@code factory.get()}
     * does.
     *
     * <p>The multimap is serializable if {@code map}, {@code factory}, the
     * sets generated by {@code factory}, and the multimap contents are all
     * serializable.
     *
     * <p>The multimap is not threadsafe when any concurrent operations update the
     * multimap, even if {@code map} and the instances generated by
     * {@code factory} are. Concurrent read operations will work correctly. To
     * allow concurrent update operations, wrap the multimap with a call to
     * {@link #synchronizedSortedSetMultimap}.
     *
     * <p>Call this method only when the simpler methods
     * {@link TreeMultimap#create()} and
     * {@link TreeMultimap#create(Comparator, Comparator)} won't suffice.
     *
     * <p>Note: the multimap assumes complete ownership over of {@code map} and
     * the sets returned by {@code factory}. Those objects should not be manually
     * updated and they should not use soft, weak, or phantom references.
     *
     * @param map place to store the mapping from each key to its corresponding
     *     values
     * @param factory supplier of new, empty sorted sets that will each hold
     *     all values for a given key
     * @throws IllegalArgumentException if {@code map} is not empty
     */
    public static <K, V> SortedSetMultimap<K, V> newSortedSetMultimap(Map<K, Collection<V>> map,
            final Supplier<? extends SortedSet<V>> factory) {
        return new CustomSortedSetMultimap<K, V>(map, factory);
    }

    private static class CustomSortedSetMultimap<K, V> extends AbstractSortedSetMultimap<K, V> {
        transient Supplier<? extends SortedSet<V>> factory;
        transient Comparator<? super V> valueComparator;

        CustomSortedSetMultimap(Map<K, Collection<V>> map, Supplier<? extends SortedSet<V>> factory) {
            super(map);
            this.factory = checkNotNull(factory);
            valueComparator = factory.get().comparator();
        }

        @Override
        protected SortedSet<V> createCollection() {
            return factory.get();
        }

        @Override
        public Comparator<? super V> valueComparator() {
            return valueComparator;
        }

        /** @serialData the factory and the backing map */
        @GwtIncompatible("java.io.ObjectOutputStream")
        private void writeObject(ObjectOutputStream stream) throws IOException {
            stream.defaultWriteObject();
            stream.writeObject(factory);
            stream.writeObject(backingMap());
        }

        @GwtIncompatible("java.io.ObjectInputStream")
        @SuppressWarnings("unchecked") // reading data stored by writeObject
        private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
            stream.defaultReadObject();
            factory = (Supplier<? extends SortedSet<V>>) stream.readObject();
            valueComparator = factory.get().comparator();
            Map<K, Collection<V>> map = (Map<K, Collection<V>>) stream.readObject();
            setMap(map);
        }

        @GwtIncompatible("not needed in emulated source")
        private static final long serialVersionUID = 0;
    }

    /**
     * Copies each key-value mapping in {@code source} into {@code dest}, with
     * its key and value reversed.
     *
     * <p>If {@code source} is an {@link ImmutableMultimap}, consider using
     * {@link ImmutableMultimap#inverse} instead.
     *
     * @param source any multimap
     * @param dest the multimap to copy into; usually empty
     * @return {@code dest}
     */
    public static <K, V, M extends Multimap<K, V>> M invertFrom(Multimap<? extends V, ? extends K> source, M dest) {
        checkNotNull(dest);
        for (Map.Entry<? extends V, ? extends K> entry : source.entries()) {
            dest.put(entry.getValue(), entry.getKey());
        }
        return dest;
    }

    /**
     * Returns a synchronized (thread-safe) multimap backed by the specified
     * multimap. In order to guarantee serial access, it is critical that
     * <b>all</b> access to the backing multimap is accomplished through the
     * returned multimap.
     *
     * <p>It is imperative that the user manually synchronize on the returned
     * multimap when accessing any of its collection views: <pre>   {@code
     *
     *   Multimap<K, V> multimap = Multimaps.synchronizedMultimap(
     *       HashMultimap.<K, V>create());
     *   ...
     *   Collection<V> values = multimap.get(key);  // Needn't be in synchronized block
     *   ...
     *   synchronized (multimap) {  // Synchronizing on multimap, not values!
     *     Iterator<V> i = values.iterator(); // Must be in synchronized block
     *     while (i.hasNext()) {
     *       foo(i.next());
     *     }
     *   }}</pre>
     *
     * <p>Failure to follow this advice may result in non-deterministic behavior.
     *
     * <p>Note that the generated multimap's {@link Multimap#removeAll} and
     * {@link Multimap#replaceValues} methods return collections that aren't
     * synchronized.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param multimap the multimap to be wrapped in a synchronized view
     * @return a synchronized view of the specified multimap
     */
    public static <K, V> Multimap<K, V> synchronizedMultimap(Multimap<K, V> multimap) {
        return Synchronized.multimap(multimap, null);
    }

    /**
     * Returns an unmodifiable view of the specified multimap. Query operations on
     * the returned multimap "read through" to the specified multimap, and
     * attempts to modify the returned multimap, either directly or through the
     * multimap's views, result in an {@code UnsupportedOperationException}.
     *
     * <p>Note that the generated multimap's {@link Multimap#removeAll} and
     * {@link Multimap#replaceValues} methods return collections that are
     * modifiable.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param delegate the multimap for which an unmodifiable view is to be
     *     returned
     * @return an unmodifiable view of the specified multimap
     */
    public static <K, V> Multimap<K, V> unmodifiableMultimap(Multimap<K, V> delegate) {
        if (delegate instanceof UnmodifiableMultimap || delegate instanceof ImmutableMultimap) {
            return delegate;
        }
        return new UnmodifiableMultimap<K, V>(delegate);
    }

    /**
     * Simply returns its argument.
     *
     * @deprecated no need to use this
     * @since 10.0
     */
    @Deprecated
    public static <K, V> Multimap<K, V> unmodifiableMultimap(ImmutableMultimap<K, V> delegate) {
        return checkNotNull(delegate);
    }

    private static class UnmodifiableMultimap<K, V> extends ForwardingMultimap<K, V> implements Serializable {
        final Multimap<K, V> delegate;
        transient Collection<Entry<K, V>> entries;
        transient Multiset<K> keys;
        transient Set<K> keySet;
        transient Collection<V> values;
        transient Map<K, Collection<V>> map;

        UnmodifiableMultimap(final Multimap<K, V> delegate) {
            this.delegate = checkNotNull(delegate);
        }

        @Override
        protected Multimap<K, V> delegate() {
            return delegate;
        }

        @Override
        public void clear() {
            throw new UnsupportedOperationException();
        }

        @Override
        public Map<K, Collection<V>> asMap() {
            Map<K, Collection<V>> result = map;
            if (result == null) {
                result = map = Collections.unmodifiableMap(
                        Maps.transformValues(delegate.asMap(), new Function<Collection<V>, Collection<V>>() {
                            @Override
                            public Collection<V> apply(Collection<V> collection) {
                                return unmodifiableValueCollection(collection);
                            }
                        }));
            }
            return result;
        }

        @Override
        public Collection<Entry<K, V>> entries() {
            Collection<Entry<K, V>> result = entries;
            if (result == null) {
                entries = result = unmodifiableEntries(delegate.entries());
            }
            return result;
        }

        @Override
        public Collection<V> get(K key) {
            return unmodifiableValueCollection(delegate.get(key));
        }

        @Override
        public Multiset<K> keys() {
            Multiset<K> result = keys;
            if (result == null) {
                keys = result = Multisets.unmodifiableMultiset(delegate.keys());
            }
            return result;
        }

        @Override
        public Set<K> keySet() {
            Set<K> result = keySet;
            if (result == null) {
                keySet = result = Collections.unmodifiableSet(delegate.keySet());
            }
            return result;
        }

        @Override
        public boolean put(K key, V value) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(Multimap<? extends K, ? extends V> multimap) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean remove(Object key, Object value) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Collection<V> removeAll(Object key) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Collection<V> replaceValues(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Collection<V> values() {
            Collection<V> result = values;
            if (result == null) {
                values = result = Collections.unmodifiableCollection(delegate.values());
            }
            return result;
        }

        private static final long serialVersionUID = 0;
    }

    private static class UnmodifiableListMultimap<K, V> extends UnmodifiableMultimap<K, V>
            implements ListMultimap<K, V> {
        UnmodifiableListMultimap(ListMultimap<K, V> delegate) {
            super(delegate);
        }

        @Override
        public ListMultimap<K, V> delegate() {
            return (ListMultimap<K, V>) super.delegate();
        }

        @Override
        public List<V> get(K key) {
            return Collections.unmodifiableList(delegate().get(key));
        }

        @Override
        public List<V> removeAll(Object key) {
            throw new UnsupportedOperationException();
        }

        @Override
        public List<V> replaceValues(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        private static final long serialVersionUID = 0;
    }

    private static class UnmodifiableSetMultimap<K, V> extends UnmodifiableMultimap<K, V>
            implements SetMultimap<K, V> {
        UnmodifiableSetMultimap(SetMultimap<K, V> delegate) {
            super(delegate);
        }

        @Override
        public SetMultimap<K, V> delegate() {
            return (SetMultimap<K, V>) super.delegate();
        }

        @Override
        public Set<V> get(K key) {
            /*
             * Note that this doesn't return a SortedSet when delegate is a
             * SortedSetMultiset, unlike (SortedSet<V>) super.get().
             */
            return Collections.unmodifiableSet(delegate().get(key));
        }

        @Override
        public Set<Map.Entry<K, V>> entries() {
            return Maps.unmodifiableEntrySet(delegate().entries());
        }

        @Override
        public Set<V> removeAll(Object key) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Set<V> replaceValues(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        private static final long serialVersionUID = 0;
    }

    private static class UnmodifiableSortedSetMultimap<K, V> extends UnmodifiableSetMultimap<K, V>
            implements SortedSetMultimap<K, V> {
        UnmodifiableSortedSetMultimap(SortedSetMultimap<K, V> delegate) {
            super(delegate);
        }

        @Override
        public SortedSetMultimap<K, V> delegate() {
            return (SortedSetMultimap<K, V>) super.delegate();
        }

        @Override
        public SortedSet<V> get(K key) {
            return Collections.unmodifiableSortedSet(delegate().get(key));
        }

        @Override
        public SortedSet<V> removeAll(Object key) {
            throw new UnsupportedOperationException();
        }

        @Override
        public SortedSet<V> replaceValues(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Comparator<? super V> valueComparator() {
            return delegate().valueComparator();
        }

        private static final long serialVersionUID = 0;
    }

    /**
     * Returns a synchronized (thread-safe) {@code SetMultimap} backed by the
     * specified multimap.
     *
     * <p>You must follow the warnings described in {@link #synchronizedMultimap}.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param multimap the multimap to be wrapped
     * @return a synchronized view of the specified multimap
     */
    public static <K, V> SetMultimap<K, V> synchronizedSetMultimap(SetMultimap<K, V> multimap) {
        return Synchronized.setMultimap(multimap, null);
    }

    /**
     * Returns an unmodifiable view of the specified {@code SetMultimap}. Query
     * operations on the returned multimap "read through" to the specified
     * multimap, and attempts to modify the returned multimap, either directly or
     * through the multimap's views, result in an
     * {@code UnsupportedOperationException}.
     *
     * <p>Note that the generated multimap's {@link Multimap#removeAll} and
     * {@link Multimap#replaceValues} methods return collections that are
     * modifiable.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param delegate the multimap for which an unmodifiable view is to be
     *     returned
     * @return an unmodifiable view of the specified multimap
     */
    public static <K, V> SetMultimap<K, V> unmodifiableSetMultimap(SetMultimap<K, V> delegate) {
        if (delegate instanceof UnmodifiableSetMultimap || delegate instanceof ImmutableSetMultimap) {
            return delegate;
        }
        return new UnmodifiableSetMultimap<K, V>(delegate);
    }

    /**
     * Simply returns its argument.
     *
     * @deprecated no need to use this
     * @since 10.0
     */
    @Deprecated
    public static <K, V> SetMultimap<K, V> unmodifiableSetMultimap(ImmutableSetMultimap<K, V> delegate) {
        return checkNotNull(delegate);
    }

    /**
     * Returns a synchronized (thread-safe) {@code SortedSetMultimap} backed by
     * the specified multimap.
     *
     * <p>You must follow the warnings described in {@link #synchronizedMultimap}.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param multimap the multimap to be wrapped
     * @return a synchronized view of the specified multimap
     */
    public static <K, V> SortedSetMultimap<K, V> synchronizedSortedSetMultimap(SortedSetMultimap<K, V> multimap) {
        return Synchronized.sortedSetMultimap(multimap, null);
    }

    /**
     * Returns an unmodifiable view of the specified {@code SortedSetMultimap}.
     * Query operations on the returned multimap "read through" to the specified
     * multimap, and attempts to modify the returned multimap, either directly or
     * through the multimap's views, result in an
     * {@code UnsupportedOperationException}.
     *
     * <p>Note that the generated multimap's {@link Multimap#removeAll} and
     * {@link Multimap#replaceValues} methods return collections that are
     * modifiable.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param delegate the multimap for which an unmodifiable view is to be
     *     returned
     * @return an unmodifiable view of the specified multimap
     */
    public static <K, V> SortedSetMultimap<K, V> unmodifiableSortedSetMultimap(SortedSetMultimap<K, V> delegate) {
        if (delegate instanceof UnmodifiableSortedSetMultimap) {
            return delegate;
        }
        return new UnmodifiableSortedSetMultimap<K, V>(delegate);
    }

    /**
     * Returns a synchronized (thread-safe) {@code ListMultimap} backed by the
     * specified multimap.
     *
     * <p>You must follow the warnings described in {@link #synchronizedMultimap}.
     *
     * @param multimap the multimap to be wrapped
     * @return a synchronized view of the specified multimap
     */
    public static <K, V> ListMultimap<K, V> synchronizedListMultimap(ListMultimap<K, V> multimap) {
        return Synchronized.listMultimap(multimap, null);
    }

    /**
     * Returns an unmodifiable view of the specified {@code ListMultimap}. Query
     * operations on the returned multimap "read through" to the specified
     * multimap, and attempts to modify the returned multimap, either directly or
     * through the multimap's views, result in an
     * {@code UnsupportedOperationException}.
     *
     * <p>Note that the generated multimap's {@link Multimap#removeAll} and
     * {@link Multimap#replaceValues} methods return collections that are
     * modifiable.
     *
     * <p>The returned multimap will be serializable if the specified multimap is
     * serializable.
     *
     * @param delegate the multimap for which an unmodifiable view is to be
     *     returned
     * @return an unmodifiable view of the specified multimap
     */
    public static <K, V> ListMultimap<K, V> unmodifiableListMultimap(ListMultimap<K, V> delegate) {
        if (delegate instanceof UnmodifiableListMultimap || delegate instanceof ImmutableListMultimap) {
            return delegate;
        }
        return new UnmodifiableListMultimap<K, V>(delegate);
    }

    /**
     * Simply returns its argument.
     *
     * @deprecated no need to use this
     * @since 10.0
     */
    @Deprecated
    public static <K, V> ListMultimap<K, V> unmodifiableListMultimap(ImmutableListMultimap<K, V> delegate) {
        return checkNotNull(delegate);
    }

    /**
     * Returns an unmodifiable view of the specified collection, preserving the
     * interface for instances of {@code SortedSet}, {@code Set}, {@code List} and
     * {@code Collection}, in that order of preference.
     *
     * @param collection the collection for which to return an unmodifiable view
     * @return an unmodifiable view of the collection
     */
    private static <V> Collection<V> unmodifiableValueCollection(Collection<V> collection) {
        if (collection instanceof SortedSet) {
            return Collections.unmodifiableSortedSet((SortedSet<V>) collection);
        } else if (collection instanceof Set) {
            return Collections.unmodifiableSet((Set<V>) collection);
        } else if (collection instanceof List) {
            return Collections.unmodifiableList((List<V>) collection);
        }
        return Collections.unmodifiableCollection(collection);
    }

    /**
     * Returns an unmodifiable view of the specified collection of entries. The
     * {@link Entry#setValue} operation throws an {@link
     * UnsupportedOperationException}. If the specified collection is a {@code
     * Set}, the returned collection is also a {@code Set}.
     *
     * @param entries the entries for which to return an unmodifiable view
     * @return an unmodifiable view of the entries
     */
    private static <K, V> Collection<Entry<K, V>> unmodifiableEntries(Collection<Entry<K, V>> entries) {
        if (entries instanceof Set) {
            return Maps.unmodifiableEntrySet((Set<Entry<K, V>>) entries);
        }
        return new Maps.UnmodifiableEntries<K, V>(Collections.unmodifiableCollection(entries));
    }

    /**
     * Returns {@link ListMultimap#asMap multimap.asMap()}, with its type
     * corrected from {@code Map<K, Collection<V>>} to {@code Map<K, List<V>>}.
     *
     * @since 15.0
     */
    @Beta
    @SuppressWarnings("unchecked")
    // safe by specification of ListMultimap.asMap()
    public static <K, V> Map<K, List<V>> asMap(ListMultimap<K, V> multimap) {
        return (Map<K, List<V>>) (Map<K, ?>) multimap.asMap();
    }

    /**
     * Returns {@link SetMultimap#asMap multimap.asMap()}, with its type corrected
     * from {@code Map<K, Collection<V>>} to {@code Map<K, Set<V>>}.
     *
     * @since 15.0
     */
    @Beta
    @SuppressWarnings("unchecked")
    // safe by specification of SetMultimap.asMap()
    public static <K, V> Map<K, Set<V>> asMap(SetMultimap<K, V> multimap) {
        return (Map<K, Set<V>>) (Map<K, ?>) multimap.asMap();
    }

    /**
     * Returns {@link SortedSetMultimap#asMap multimap.asMap()}, with its type
     * corrected from {@code Map<K, Collection<V>>} to
     * {@code Map<K, SortedSet<V>>}.
     *
     * @since 15.0
     */
    @Beta
    @SuppressWarnings("unchecked")
    // safe by specification of SortedSetMultimap.asMap()
    public static <K, V> Map<K, SortedSet<V>> asMap(SortedSetMultimap<K, V> multimap) {
        return (Map<K, SortedSet<V>>) (Map<K, ?>) multimap.asMap();
    }

    /**
     * Returns {@link Multimap#asMap multimap.asMap()}. This is provided for
     * parity with the other more strongly-typed {@code asMap()} implementations.
     *
     * @since 15.0
     */
    @Beta
    public static <K, V> Map<K, Collection<V>> asMap(Multimap<K, V> multimap) {
        return multimap.asMap();
    }

    /**
     * Returns a multimap view of the specified map. The multimap is backed by the
     * map, so changes to the map are reflected in the multimap, and vice versa.
     * If the map is modified while an iteration over one of the multimap's
     * collection views is in progress (except through the iterator's own {@code
     * remove} operation, or through the {@code setValue} operation on a map entry
     * returned by the iterator), the results of the iteration are undefined.
     *
     * <p>The multimap supports mapping removal, which removes the corresponding
     * mapping from the map. It does not support any operations which might add
     * mappings, such as {@code put}, {@code putAll} or {@code replaceValues}.
     *
     * <p>The returned multimap will be serializable if the specified map is
     * serializable.
     *
     * @param map the backing map for the returned multimap view
     */
    public static <K, V> SetMultimap<K, V> forMap(Map<K, V> map) {
        return new MapMultimap<K, V>(map);
    }

    /** @see Multimaps#forMap */
    private static class MapMultimap<K, V> extends AbstractMultimap<K, V>
            implements SetMultimap<K, V>, Serializable {
        final Map<K, V> map;

        MapMultimap(Map<K, V> map) {
            this.map = checkNotNull(map);
        }

        @Override
        public int size() {
            return map.size();
        }

        @Override
        public boolean containsKey(Object key) {
            return map.containsKey(key);
        }

        @Override
        public boolean containsValue(Object value) {
            return map.containsValue(value);
        }

        @Override
        public boolean containsEntry(Object key, Object value) {
            return map.entrySet().contains(Maps.immutableEntry(key, value));
        }

        @Override
        public Set<V> get(final K key) {
            return new Sets.ImprovedAbstractSet<V>() {
                @Override
                public Iterator<V> iterator() {
                    return new Iterator<V>() {
                        int i;

                        @Override
                        public boolean hasNext() {
                            return (i == 0) && map.containsKey(key);
                        }

                        @Override
                        public V next() {
                            if (!hasNext()) {
                                throw new NoSuchElementException();
                            }
                            i++;
                            return map.get(key);
                        }

                        @Override
                        public void remove() {
                            checkRemove(i == 1);
                            i = -1;
                            map.remove(key);
                        }
                    };
                }

                @Override
                public int size() {
                    return map.containsKey(key) ? 1 : 0;
                }
            };
        }

        @Override
        public boolean put(K key, V value) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(Multimap<? extends K, ? extends V> multimap) {
            throw new UnsupportedOperationException();
        }

        @Override
        public Set<V> replaceValues(K key, Iterable<? extends V> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean remove(Object key, Object value) {
            return map.entrySet().remove(Maps.immutableEntry(key, value));
        }

        @Override
        public Set<V> removeAll(Object key) {
            Set<V> values = new HashSet<V>(2);
            if (!map.containsKey(key)) {
                return values;
            }
            values.add(map.remove(key));
            return values;
        }

        @Override
        public void clear() {
            map.clear();
        }

        @Override
        public Set<K> keySet() {
            return map.keySet();
        }

        @Override
        public Collection<V> values() {
            return map.values();
        }

        @Override
        public Set<Entry<K, V>> entries() {
            return map.entrySet();
        }

        @Override
        Iterator<Entry<K, V>> entryIterator() {
            return map.entrySet().iterator();
        }

        @Override
        Map<K, Collection<V>> createAsMap() {
            return new AsMap<K, V>(this);
        }

        @Override
        public int hashCode() {
            return map.hashCode();
        }

        private static final long serialVersionUID = 7845222491160860175L;
    }

    /**
     * Returns a view of a multimap where each value is transformed by a function.
     * All other properties of the multimap, such as iteration order, are left
     * intact. For example, the code: <pre>   {@code
     *
     * Multimap<String, Integer> multimap =
     *     ImmutableSetMultimap.of("a", 2, "b", -3, "b", -3, "a", 4, "c", 6);
     * Function<Integer, String> square = new Function<Integer, String>() {
     *     public String apply(Integer in) {
     *       return Integer.toString(in * in);
     *     }
     * };
     * Multimap<String, String> transformed =
     *     Multimaps.transformValues(multimap, square);
     *   System.out.println(transformed);}</pre>
     *
     * ... prints {@code {a=[4, 16], b=[9, 9], c=[36]}}.
     *
     * <p>Changes in the underlying multimap are reflected in this view.
     * Conversely, this view supports removal operations, and these are reflected
     * in the underlying multimap.
     *
     * <p>It's acceptable for the underlying multimap to contain null keys, and
     * even null values provided that the function is capable of accepting null
     * input.  The transformed multimap might contain null values, if the function
     * sometimes gives a null result.
     *
     * <p>The returned multimap is not thread-safe or serializable, even if the
     * underlying multimap is.  The {@code equals} and {@code hashCode} methods
     * of the returned multimap are meaningless, since there is not a definition
     * of {@code equals} or {@code hashCode} for general collections, and
     * {@code get()} will return a general {@code Collection} as opposed to a
     * {@code List} or a {@code Set}.
     *
     * <p>The function is applied lazily, invoked when needed. This is necessary
     * for the returned multimap to be a view, but it means that the function will
     * be applied many times for bulk operations like
     * {@link Multimap#containsValue} and {@code Multimap.toString()}. For this to
     * perform well, {@code function} should be fast. To avoid lazy evaluation
     * when the returned multimap doesn't need to be a view, copy the returned
     * multimap into a new multimap of your choosing.
     *
     * @since 7.0
     */
    public static <K, V1, V2> Multimap<K, V2> transformValues(Multimap<K, V1> fromMultimap,
            final Function<? super V1, V2> function) {
        checkNotNull(function);
        EntryTransformer<K, V1, V2> transformer = Maps.asEntryTransformer(function);
        return transformEntries(fromMultimap, transformer);
    }

    /**
     * Returns a view of a multimap whose values are derived from the original
     * multimap's entries. In contrast to {@link #transformValues}, this method's
     * entry-transformation logic may depend on the key as well as the value.
     *
     * <p>All other properties of the transformed multimap, such as iteration
     * order, are left intact. For example, the code: <pre>   {@code
     *
     *   SetMultimap<String, Integer> multimap =
     *       ImmutableSetMultimap.of("a", 1, "a", 4, "b", -6);
     *   EntryTransformer<String, Integer, String> transformer =
     *       new EntryTransformer<String, Integer, String>() {
     *         public String transformEntry(String key, Integer value) {
     *            return (value >= 0) ? key : "no" + key;
     *         }
     *       };
     *   Multimap<String, String> transformed =
     *       Multimaps.transformEntries(multimap, transformer);
     *   System.out.println(transformed);}</pre>
     *
     * ... prints {@code {a=[a, a], b=[nob]}}.
     *
     * <p>Changes in the underlying multimap are reflected in this view.
     * Conversely, this view supports removal operations, and these are reflected
     * in the underlying multimap.
     *
     * <p>It's acceptable for the underlying multimap to contain null keys and
     * null values provided that the transformer is capable of accepting null
     * inputs. The transformed multimap might contain null values if the
     * transformer sometimes gives a null result.
     *
     * <p>The returned multimap is not thread-safe or serializable, even if the
     * underlying multimap is.  The {@code equals} and {@code hashCode} methods
     * of the returned multimap are meaningless, since there is not a definition
     * of {@code equals} or {@code hashCode} for general collections, and
     * {@code get()} will return a general {@code Collection} as opposed to a
     * {@code List} or a {@code Set}.
     *
     * <p>The transformer is applied lazily, invoked when needed. This is
     * necessary for the returned multimap to be a view, but it means that the
     * transformer will be applied many times for bulk operations like {@link
     * Multimap#containsValue} and {@link Object#toString}. For this to perform
     * well, {@code transformer} should be fast. To avoid lazy evaluation when the
     * returned multimap doesn't need to be a view, copy the returned multimap
     * into a new multimap of your choosing.
     *
     * <p><b>Warning:</b> This method assumes that for any instance {@code k} of
     * {@code EntryTransformer} key type {@code K}, {@code k.equals(k2)} implies
     * that {@code k2} is also of type {@code K}. Using an {@code
     * EntryTransformer} key type for which this may not hold, such as {@code
     * ArrayList}, may risk a {@code ClassCastException} when calling methods on
     * the transformed multimap.
     *
     * @since 7.0
     */
    public static <K, V1, V2> Multimap<K, V2> transformEntries(Multimap<K, V1> fromMap,
            EntryTransformer<? super K, ? super V1, V2> transformer) {
        return new TransformedEntriesMultimap<K, V1, V2>(fromMap, transformer);
    }

    private static class TransformedEntriesMultimap<K, V1, V2> extends AbstractMultimap<K, V2> {
        final Multimap<K, V1> fromMultimap;
        final EntryTransformer<? super K, ? super V1, V2> transformer;

        TransformedEntriesMultimap(Multimap<K, V1> fromMultimap,
                final EntryTransformer<? super K, ? super V1, V2> transformer) {
            this.fromMultimap = checkNotNull(fromMultimap);
            this.transformer = checkNotNull(transformer);
        }

        Collection<V2> transform(K key, Collection<V1> values) {
            Function<? super V1, V2> function = Maps.asValueToValueFunction(transformer, key);
            if (values instanceof List) {
                return Lists.transform((List<V1>) values, function);
            } else {
                return Collections2.transform(values, function);
            }
        }

        @Override
        Map<K, Collection<V2>> createAsMap() {
            return Maps.transformEntries(fromMultimap.asMap(),
                    new EntryTransformer<K, Collection<V1>, Collection<V2>>() {
                        @Override
                        public Collection<V2> transformEntry(K key, Collection<V1> value) {
                            return transform(key, value);
                        }
                    });
        }

        @Override
        public void clear() {
            fromMultimap.clear();
        }

        @Override
        public boolean containsKey(Object key) {
            return fromMultimap.containsKey(key);
        }

        @Override
        Iterator<Entry<K, V2>> entryIterator() {
            return Iterators.transform(fromMultimap.entries().iterator(),
                    Maps.<K, V1, V2>asEntryToEntryFunction(transformer));
        }

        @Override
        public Collection<V2> get(final K key) {
            return transform(key, fromMultimap.get(key));
        }

        @Override
        public boolean isEmpty() {
            return fromMultimap.isEmpty();
        }

        @Override
        public Set<K> keySet() {
            return fromMultimap.keySet();
        }

        @Override
        public Multiset<K> keys() {
            return fromMultimap.keys();
        }

        @Override
        public boolean put(K key, V2 value) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(K key, Iterable<? extends V2> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public boolean putAll(Multimap<? extends K, ? extends V2> multimap) {
            throw new UnsupportedOperationException();
        }

        @SuppressWarnings("unchecked")
        @Override
        public boolean remove(Object key, Object value) {
            return get((K) key).remove(value);
        }

        @SuppressWarnings("unchecked")
        @Override
        public Collection<V2> removeAll(Object key) {
            return transform((K) key, fromMultimap.removeAll(key));
        }

        @Override
        public Collection<V2> replaceValues(K key, Iterable<? extends V2> values) {
            throw new UnsupportedOperationException();
        }

        @Override
        public int size() {
            return fromMultimap.size();
        }

        @Override
        Collection<V2> createValues() {
            return Collections2.transform(fromMultimap.entries(),
                    Maps.<K, V1, V2>asEntryToValueFunction(transformer));
        }
    }

    /**
     * Returns a view of a {@code ListMultimap} where each value is transformed by
     * a function. All other properties of the multimap, such as iteration order,
     * are left intact. For example, the code: <pre>   {@code
     *
     *   ListMultimap<String, Integer> multimap
     *        = ImmutableListMultimap.of("a", 4, "a", 16, "b", 9);
     *   Function<Integer, Double> sqrt =
     *       new Function<Integer, Double>() {
     *         public Double apply(Integer in) {
     *           return Math.sqrt((int) in);
     *         }
     *       };
     *   ListMultimap<String, Double> transformed = Multimaps.transformValues(map,
     *       sqrt);
     *   System.out.println(transformed);}</pre>
     *
     * ... prints {@code {a=[2.0, 4.0], b=[3.0]}}.
     *
     * <p>Changes in the underlying multimap are reflected in this view.
     * Conversely, this view supports removal operations, and these are reflected
     * in the underlying multimap.
     *
     * <p>It's acceptable for the underlying multimap to contain null keys, and
     * even null values provided that the function is capable of accepting null
     * input.  The transformed multimap might contain null values, if the function
     * sometimes gives a null result.
     *
     * <p>The returned multimap is not thread-safe or serializable, even if the
     * underlying multimap is.
     *
     * <p>The function is applied lazily, invoked when needed. This is necessary
     * for the returned multimap to be a view, but it means that the function will
     * be applied many times for bulk operations like
     * {@link Multimap#containsValue} and {@code Multimap.toString()}. For this to
     * perform well, {@code function} should be fast. To avoid lazy evaluation
     * when the returned multimap doesn't need to be a view, copy the returned
     * multimap into a new multimap of your choosing.
     *
     * @since 7.0
     */
    public static <K, V1, V2> ListMultimap<K, V2> transformValues(ListMultimap<K, V1> fromMultimap,
            final Function<? super V1, V2> function) {
        checkNotNull(function);
        EntryTransformer<K, V1, V2> transformer = Maps.asEntryTransformer(function);
        return transformEntries(fromMultimap, transformer);
    }

    /**
     * Returns a view of a {@code ListMultimap} whose values are derived from the
     * original multimap's entries. In contrast to
     * {@link #transformValues(ListMultimap, Function)}, this method's
     * entry-transformation logic may depend on the key as well as the value.
     *
     * <p>All other properties of the transformed multimap, such as iteration
     * order, are left intact. For example, the code: <pre>   {@code
     *
     *   Multimap<String, Integer> multimap =
     *       ImmutableMultimap.of("a", 1, "a", 4, "b", 6);
     *   EntryTransformer<String, Integer, String> transformer =
     *       new EntryTransformer<String, Integer, String>() {
     *         public String transformEntry(String key, Integer value) {
     *           return key + value;
     *         }
     *       };
     *   Multimap<String, String> transformed =
     *       Multimaps.transformEntries(multimap, transformer);
     *   System.out.println(transformed);}</pre>
     *
     * ... prints {@code {"a"=["a1", "a4"], "b"=["b6"]}}.
     *
     * <p>Changes in the underlying multimap are reflected in this view.
     * Conversely, this view supports removal operations, and these are reflected
     * in the underlying multimap.
     *
     * <p>It's acceptable for the underlying multimap to contain null keys and
     * null values provided that the transformer is capable of accepting null
     * inputs. The transformed multimap might contain null values if the
     * transformer sometimes gives a null result.
     *
     * <p>The returned multimap is not thread-safe or serializable, even if the
     * underlying multimap is.
     *
     * <p>The transformer is applied lazily, invoked when needed. This is
     * necessary for the returned multimap to be a view, but it means that the
     * transformer will be applied many times for bulk operations like {@link
     * Multimap#containsValue} and {@link Object#toString}. For this to perform
     * well, {@code transformer} should be fast. To avoid lazy evaluation when the
     * returned multimap doesn't need to be a view, copy the returned multimap
     * into a new multimap of your choosing.
     *
     * <p><b>Warning:</b> This method assumes that for any instance {@code k} of
     * {@code EntryTransformer} key type {@code K}, {@code k.equals(k2)} implies
     * that {@code k2} is also of type {@code K}. Using an {@code
     * EntryTransformer} key type for which this may not hold, such as {@code
     * ArrayList}, may risk a {@code ClassCastException} when calling methods on
     * the transformed multimap.
     *
     * @since 7.0
     */
    public static <K, V1, V2> ListMultimap<K, V2> transformEntries(ListMultimap<K, V1> fromMap,
            EntryTransformer<? super K, ? super V1, V2> transformer) {
        return new TransformedEntriesListMultimap<K, V1, V2>(fromMap, transformer);
    }

    private static final class TransformedEntriesListMultimap<K, V1, V2>
            extends TransformedEntriesMultimap<K, V1, V2> implements ListMultimap<K, V2> {

        TransformedEntriesListMultimap(ListMultimap<K, V1> fromMultimap,
                EntryTransformer<? super K, ? super V1, V2> transformer) {
            super(fromMultimap, transformer);
        }

        @Override
        List<V2> transform(K key, Collection<V1> values) {
            return Lists.transform((List<V1>) values, Maps.asValueToValueFunction(transformer, key));
        }

        @Override
        public List<V2> get(K key) {
            return transform(key, fromMultimap.get(key));
        }

        @SuppressWarnings("unchecked")
        @Override
        public List<V2> removeAll(Object key) {
            return transform((K) key, fromMultimap.removeAll(key));
        }

        @Override
        public List<V2> replaceValues(K key, Iterable<? extends V2> values) {
            throw new UnsupportedOperationException();
        }
    }

    /**
     * Creates an index {@code ImmutableListMultimap} that contains the results of
     * applying a specified function to each item in an {@code Iterable} of
     * values. Each value will be stored as a value in the resulting multimap,
     * yielding a multimap with the same size as the input iterable. The key used
     * to store that value in the multimap will be the result of calling the
     * function on that value. The resulting multimap is created as an immutable
     * snapshot. In the returned multimap, keys appear in the order they are first
     * encountered, and the values corresponding to each key appear in the same
     * order as they are encountered.
     *
     * <p>For example, <pre>   {@code
     *
     *   List<String> badGuys =
     *       Arrays.asList("Inky", "Blinky", "Pinky", "Pinky", "Clyde");
     *   Function<String, Integer> stringLengthFunction = ...;
     *   Multimap<Integer, String> index =
     *       Multimaps.index(badGuys, stringLengthFunction);
     *   System.out.println(index);}</pre>
     *
     * <p>prints <pre>   {@code
     *
     *   {4=[Inky], 6=[Blinky], 5=[Pinky, Pinky, Clyde]}}</pre>
     *
     * <p>The returned multimap is serializable if its keys and values are all
     * serializable.
     *
     * @param values the values to use when constructing the {@code
     *     ImmutableListMultimap}
     * @param keyFunction the function used to produce the key for each value
     * @return {@code ImmutableListMultimap} mapping the result of evaluating the
     *     function {@code keyFunction} on each value in the input collection to
     *     that value
     * @throws NullPointerException if any of the following cases is true:
     *     <ul>
     *     <li>{@code values} is null
     *     <li>{@code keyFunction} is null
     *     <li>An element in {@code values} is null
     *     <li>{@code keyFunction} returns {@code null} for any element of {@code
     *         values}
     *     </ul>
     */
    public static <K, V> ImmutableListMultimap<K, V> index(Iterable<V> values, Function<? super V, K> keyFunction) {
        return index(values.iterator(), keyFunction);
    }

    /**
     * Creates an index {@code ImmutableListMultimap} that contains the results of
     * applying a specified function to each item in an {@code Iterator} of
     * values. Each value will be stored as a value in the resulting multimap,
     * yielding a multimap with the same size as the input iterator. The key used
     * to store that value in the multimap will be the result of calling the
     * function on that value. The resulting multimap is created as an immutable
     * snapshot. In the returned multimap, keys appear in the order they are first
     * encountered, and the values corresponding to each key appear in the same
     * order as they are encountered.
     *
     * <p>For example, <pre>   {@code
     *
     *   List<String> badGuys =
     *       Arrays.asList("Inky", "Blinky", "Pinky", "Pinky", "Clyde");
     *   Function<String, Integer> stringLengthFunction = ...;
     *   Multimap<Integer, String> index =
     *       Multimaps.index(badGuys.iterator(), stringLengthFunction);
     *   System.out.println(index);}</pre>
     *
     * <p>prints <pre>   {@code
     *
     *   {4=[Inky], 6=[Blinky], 5=[Pinky, Pinky, Clyde]}}</pre>
     *
     * <p>The returned multimap is serializable if its keys and values are all
     * serializable.
     *
     * @param values the values to use when constructing the {@code
     *     ImmutableListMultimap}
     * @param keyFunction the function used to produce the key for each value
     * @return {@code ImmutableListMultimap} mapping the result of evaluating the
     *     function {@code keyFunction} on each value in the input collection to
     *     that value
     * @throws NullPointerException if any of the following cases is true:
     *     <ul>
     *     <li>{@code values} is null
     *     <li>{@code keyFunction} is null
     *     <li>An element in {@code values} is null
     *     <li>{@code keyFunction} returns {@code null} for any element of {@code
     *         values}
     *     </ul>
     * @since 10.0
     */
    public static <K, V> ImmutableListMultimap<K, V> index(Iterator<V> values, Function<? super V, K> keyFunction) {
        checkNotNull(keyFunction);
        ImmutableListMultimap.Builder<K, V> builder = ImmutableListMultimap.builder();
        while (values.hasNext()) {
            V value = values.next();
            checkNotNull(value, values);
            builder.put(keyFunction.apply(value), value);
        }
        return builder.build();
    }

    static class Keys<K, V> extends AbstractMultiset<K> {
        @Weak
        final Multimap<K, V> multimap;

        Keys(Multimap<K, V> multimap) {
            this.multimap = multimap;
        }

        @Override
        Iterator<Multiset.Entry<K>> entryIterator() {
            return new TransformedIterator<Map.Entry<K, Collection<V>>, Multiset.Entry<K>>(
                    multimap.asMap().entrySet().iterator()) {
                @Override
                Multiset.Entry<K> transform(final Map.Entry<K, Collection<V>> backingEntry) {
                    return new Multisets.AbstractEntry<K>() {
                        @Override
                        public K getElement() {
                            return backingEntry.getKey();
                        }

                        @Override
                        public int getCount() {
                            return backingEntry.getValue().size();
                        }
                    };
                }
            };
        }

        @Override
        int distinctElements() {
            return multimap.asMap().size();
        }

        @Override
        Set<Multiset.Entry<K>> createEntrySet() {
            return new KeysEntrySet();
        }

        @WeakOuter
        class KeysEntrySet extends Multisets.EntrySet<K> {
            @Override
            Multiset<K> multiset() {
                return Keys.this;
            }

            @Override
            public Iterator<Multiset.Entry<K>> iterator() {
                return entryIterator();
            }

            @Override
            public int size() {
                return distinctElements();
            }

            @Override
            public boolean isEmpty() {
                return multimap.isEmpty();
            }

            @Override
            public boolean contains(@Nullable Object o) {
                if (o instanceof Multiset.Entry) {
                    Multiset.Entry<?> entry = (Multiset.Entry<?>) o;
                    Collection<V> collection = multimap.asMap().get(entry.getElement());
                    return collection != null && collection.size() == entry.getCount();
                }
                return false;
            }

            @Override
            public boolean remove(@Nullable Object o) {
                if (o instanceof Multiset.Entry) {
                    Multiset.Entry<?> entry = (Multiset.Entry<?>) o;
                    Collection<V> collection = multimap.asMap().get(entry.getElement());
                    if (collection != null && collection.size() == entry.getCount()) {
                        collection.clear();
                        return true;
                    }
                }
                return false;
            }
        }

        @Override
        public boolean contains(@Nullable Object element) {
            return multimap.containsKey(element);
        }

        @Override
        public Iterator<K> iterator() {
            return Maps.keyIterator(multimap.entries().iterator());
        }

        @Override
        public int count(@Nullable Object element) {
            Collection<V> values = Maps.safeGet(multimap.asMap(), element);
            return (values == null) ? 0 : values.size();
        }

        @Override
        public int remove(@Nullable Object element, int occurrences) {
            checkNonnegative(occurrences, "occurrences");
            if (occurrences == 0) {
                return count(element);
            }

            Collection<V> values = Maps.safeGet(multimap.asMap(), element);

            if (values == null) {
                return 0;
            }

            int oldCount = values.size();
            if (occurrences >= oldCount) {
                values.clear();
            } else {
                Iterator<V> iterator = values.iterator();
                for (int i = 0; i < occurrences; i++) {
                    iterator.next();
                    iterator.remove();
                }
            }
            return oldCount;
        }

        @Override
        public void clear() {
            multimap.clear();
        }

        @Override
        public Set<K> elementSet() {
            return multimap.keySet();
        }
    }

    /**
     * A skeleton implementation of {@link Multimap#entries()}.
     */
    abstract static class Entries<K, V> extends AbstractCollection<Map.Entry<K, V>> {
        abstract Multimap<K, V> multimap();

        @Override
        public int size() {
            return multimap().size();
        }

        @Override
        public boolean contains(@Nullable Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
                return multimap().containsEntry(entry.getKey(), entry.getValue());
            }
            return false;
        }

        @Override
        public boolean remove(@Nullable Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
                return multimap().remove(entry.getKey(), entry.getValue());
            }
            return false;
        }

        @Override
        public void clear() {
            multimap().clear();
        }
    }

    /**
     * A skeleton implementation of {@link Multimap#asMap()}.
     */
    static final class AsMap<K, V> extends Maps.ViewCachingAbstractMap<K, Collection<V>> {
        @Weak
        private final Multimap<K, V> multimap;

        AsMap(Multimap<K, V> multimap) {
            this.multimap = checkNotNull(multimap);
        }

        @Override
        public int size() {
            return multimap.keySet().size();
        }

        @Override
        protected Set<Entry<K, Collection<V>>> createEntrySet() {
            return new EntrySet();
        }

        void removeValuesForKey(Object key) {
            multimap.keySet().remove(key);
        }

        @WeakOuter
        class EntrySet extends Maps.EntrySet<K, Collection<V>> {
            @Override
            Map<K, Collection<V>> map() {
                return AsMap.this;
            }

            @Override
            public Iterator<Entry<K, Collection<V>>> iterator() {
                return Maps.asMapEntryIterator(multimap.keySet(), new Function<K, Collection<V>>() {
                    @Override
                    public Collection<V> apply(K key) {
                        return multimap.get(key);
                    }
                });
            }

            @Override
            public boolean remove(Object o) {
                if (!contains(o)) {
                    return false;
                }
                Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
                removeValuesForKey(entry.getKey());
                return true;
            }
        }

        @SuppressWarnings("unchecked")
        @Override
        public Collection<V> get(Object key) {
            return containsKey(key) ? multimap.get((K) key) : null;
        }

        @Override
        public Collection<V> remove(Object key) {
            return containsKey(key) ? multimap.removeAll(key) : null;
        }

        @Override
        public Set<K> keySet() {
            return multimap.keySet();
        }

        @Override
        public boolean isEmpty() {
            return multimap.isEmpty();
        }

        @Override
        public boolean containsKey(Object key) {
            return multimap.containsKey(key);
        }

        @Override
        public void clear() {
            multimap.clear();
        }
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} whose keys
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a key that doesn't satisfy the predicate, the
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose keys satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with equals</i>,
     * as documented at {@link Predicate#apply}. Do not provide a predicate such
     * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
     * with equals.
     *
     * @since 11.0
     */
    @CheckReturnValue
    public static <K, V> Multimap<K, V> filterKeys(Multimap<K, V> unfiltered,
            final Predicate<? super K> keyPredicate) {
        if (unfiltered instanceof SetMultimap) {
            return filterKeys((SetMultimap<K, V>) unfiltered, keyPredicate);
        } else if (unfiltered instanceof ListMultimap) {
            return filterKeys((ListMultimap<K, V>) unfiltered, keyPredicate);
        } else if (unfiltered instanceof FilteredKeyMultimap) {
            FilteredKeyMultimap<K, V> prev = (FilteredKeyMultimap<K, V>) unfiltered;
            return new FilteredKeyMultimap<K, V>(prev.unfiltered, Predicates.and(prev.keyPredicate, keyPredicate));
        } else if (unfiltered instanceof FilteredMultimap) {
            FilteredMultimap<K, V> prev = (FilteredMultimap<K, V>) unfiltered;
            return filterFiltered(prev, Maps.<K>keyPredicateOnEntries(keyPredicate));
        } else {
            return new FilteredKeyMultimap<K, V>(unfiltered, keyPredicate);
        }
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} whose keys
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a key that doesn't satisfy the predicate, the
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose keys satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with equals</i>,
     * as documented at {@link Predicate#apply}. Do not provide a predicate such
     * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
     * with equals.
     *
     * @since 14.0
     */
    @CheckReturnValue
    public static <K, V> SetMultimap<K, V> filterKeys(SetMultimap<K, V> unfiltered,
            final Predicate<? super K> keyPredicate) {
        if (unfiltered instanceof FilteredKeySetMultimap) {
            FilteredKeySetMultimap<K, V> prev = (FilteredKeySetMultimap<K, V>) unfiltered;
            return new FilteredKeySetMultimap<K, V>(prev.unfiltered(),
                    Predicates.and(prev.keyPredicate, keyPredicate));
        } else if (unfiltered instanceof FilteredSetMultimap) {
            FilteredSetMultimap<K, V> prev = (FilteredSetMultimap<K, V>) unfiltered;
            return filterFiltered(prev, Maps.<K>keyPredicateOnEntries(keyPredicate));
        } else {
            return new FilteredKeySetMultimap<K, V>(unfiltered, keyPredicate);
        }
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} whose keys
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a key that doesn't satisfy the predicate, the
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose keys satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with equals</i>,
     * as documented at {@link Predicate#apply}. Do not provide a predicate such
     * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
     * with equals.
     *
     * @since 14.0
     */
    @CheckReturnValue
    public static <K, V> ListMultimap<K, V> filterKeys(ListMultimap<K, V> unfiltered,
            final Predicate<? super K> keyPredicate) {
        if (unfiltered instanceof FilteredKeyListMultimap) {
            FilteredKeyListMultimap<K, V> prev = (FilteredKeyListMultimap<K, V>) unfiltered;
            return new FilteredKeyListMultimap<K, V>(prev.unfiltered(),
                    Predicates.and(prev.keyPredicate, keyPredicate));
        } else {
            return new FilteredKeyListMultimap<K, V>(unfiltered, keyPredicate);
        }
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} whose values
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a value that doesn't satisfy the predicate, the
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose value satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code valuePredicate} must be <i>consistent with
     * equals</i>, as documented at {@link Predicate#apply}. Do not provide a
     * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is
     * inconsistent with equals.
     *
     * @since 11.0
     */
    @CheckReturnValue
    public static <K, V> Multimap<K, V> filterValues(Multimap<K, V> unfiltered,
            final Predicate<? super V> valuePredicate) {
        return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate));
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} whose values
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a value that doesn't satisfy the predicate, the
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose value satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code valuePredicate} must be <i>consistent with
     * equals</i>, as documented at {@link Predicate#apply}. Do not provide a
     * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is
     * inconsistent with equals.
     *
     * @since 14.0
     */
    @CheckReturnValue
    public static <K, V> SetMultimap<K, V> filterValues(SetMultimap<K, V> unfiltered,
            final Predicate<? super V> valuePredicate) {
        return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate));
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} that
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a key/value pair that doesn't satisfy the predicate,
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose keys satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with
     * equals</i>, as documented at {@link Predicate#apply}.
     *
     * @since 11.0
     */
    @CheckReturnValue
    public static <K, V> Multimap<K, V> filterEntries(Multimap<K, V> unfiltered,
            Predicate<? super Entry<K, V>> entryPredicate) {
        checkNotNull(entryPredicate);
        if (unfiltered instanceof SetMultimap) {
            return filterEntries((SetMultimap<K, V>) unfiltered, entryPredicate);
        }
        return (unfiltered instanceof FilteredMultimap)
                ? filterFiltered((FilteredMultimap<K, V>) unfiltered, entryPredicate)
                : new FilteredEntryMultimap<K, V>(checkNotNull(unfiltered), entryPredicate);
    }

    /**
     * Returns a multimap containing the mappings in {@code unfiltered} that
     * satisfy a predicate. The returned multimap is a live view of
     * {@code unfiltered}; changes to one affect the other.
     *
     * <p>The resulting multimap's views have iterators that don't support
     * {@code remove()}, but all other methods are supported by the multimap and
     * its views. When adding a key/value pair that doesn't satisfy the predicate,
     * multimap's {@code put()}, {@code putAll()}, and {@code replaceValues()}
     * methods throw an {@link IllegalArgumentException}.
     *
     * <p>When methods such as {@code removeAll()} and {@code clear()} are called on
     * the filtered multimap or its views, only mappings whose keys satisfy the
     * filter will be removed from the underlying multimap.
     *
     * <p>The returned multimap isn't threadsafe or serializable, even if
     * {@code unfiltered} is.
     *
     * <p>Many of the filtered multimap's methods, such as {@code size()}, iterate
     * across every key/value mapping in the underlying multimap and determine
     * which satisfy the filter. When a live view is <i>not</i> needed, it may be
     * faster to copy the filtered multimap and use the copy.
     *
     * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with
     * equals</i>, as documented at {@link Predicate#apply}.
     *
     * @since 14.0
     */
    @CheckReturnValue
    public static <K, V> SetMultimap<K, V> filterEntries(SetMultimap<K, V> unfiltered,
            Predicate<? super Entry<K, V>> entryPredicate) {
        checkNotNull(entryPredicate);
        return (unfiltered instanceof FilteredSetMultimap)
                ? filterFiltered((FilteredSetMultimap<K, V>) unfiltered, entryPredicate)
                : new FilteredEntrySetMultimap<K, V>(checkNotNull(unfiltered), entryPredicate);
    }

    /**
     * Support removal operations when filtering a filtered multimap. Since a
     * filtered multimap has iterators that don't support remove, passing one to
     * the FilteredEntryMultimap constructor would lead to a multimap whose removal
     * operations would fail. This method combines the predicates to avoid that
     * problem.
     */
    private static <K, V> Multimap<K, V> filterFiltered(FilteredMultimap<K, V> multimap,
            Predicate<? super Entry<K, V>> entryPredicate) {
        Predicate<Entry<K, V>> predicate = Predicates.and(multimap.entryPredicate(), entryPredicate);
        return new FilteredEntryMultimap<K, V>(multimap.unfiltered(), predicate);
    }

    /**
     * Support removal operations when filtering a filtered multimap. Since a filtered multimap has
     * iterators that don't support remove, passing one to the FilteredEntryMultimap constructor would
     * lead to a multimap whose removal operations would fail. This method combines the predicates to
     * avoid that problem.
     */
    private static <K, V> SetMultimap<K, V> filterFiltered(FilteredSetMultimap<K, V> multimap,
            Predicate<? super Entry<K, V>> entryPredicate) {
        Predicate<Entry<K, V>> predicate = Predicates.and(multimap.entryPredicate(), entryPredicate);
        return new FilteredEntrySetMultimap<K, V>(multimap.unfiltered(), predicate);
    }

    static boolean equalsImpl(Multimap<?, ?> multimap, @Nullable Object object) {
        if (object == multimap) {
            return true;
        }
        if (object instanceof Multimap) {
            Multimap<?, ?> that = (Multimap<?, ?>) object;
            return multimap.asMap().equals(that.asMap());
        }
        return false;
    }

    // TODO(jlevy): Create methods that filter a SortedSetMultimap.
}