com.google.common.collect.Iterators.java Source code

Java tutorial

Introduction

Here is the source code for com.google.common.collect.Iterators.java

Source

/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.base.Predicates.equalTo;
import static com.google.common.base.Predicates.in;
import static com.google.common.base.Predicates.instanceOf;
import static com.google.common.base.Predicates.not;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.base.Optional;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;

import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;

import javax.annotation.CheckReturnValue;
import javax.annotation.Nullable;

/**
 * This class contains static utility methods that operate on or return objects
 * of type {@link Iterator}. Except as noted, each method has a corresponding
 * {@link Iterable}-based method in the {@link Iterables} class.
 *
 * <p><i>Performance notes:</i> Unless otherwise noted, all of the iterators
 * produced in this class are <i>lazy</i>, which means that they only advance
 * the backing iteration when absolutely necessary.
 *
 * <p>See the Guava User Guide section on <a href=
 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#iterables">
 * {@code Iterators}</a>.
 *
 * @author Kevin Bourrillion
 * @author Jared Levy
 * @since 2.0
 */
@GwtCompatible(emulated = true)
public final class Iterators {
    private Iterators() {
    }

    static final UnmodifiableListIterator<Object> EMPTY_LIST_ITERATOR = new UnmodifiableListIterator<Object>() {
        @Override
        public boolean hasNext() {
            return false;
        }

        @Override
        public Object next() {
            throw new NoSuchElementException();
        }

        @Override
        public boolean hasPrevious() {
            return false;
        }

        @Override
        public Object previous() {
            throw new NoSuchElementException();
        }

        @Override
        public int nextIndex() {
            return 0;
        }

        @Override
        public int previousIndex() {
            return -1;
        }
    };

    /**
     * Returns the empty iterator.
     *
     * <p>The {@link Iterable} equivalent of this method is {@link
     * ImmutableSet#of()}.
     *
     * @deprecated Use {@code ImmutableSet.<T>of().iterator()} instead; or for
     *     Java 7 or later, {@link Collections#emptyIterator}. This method is
     *     scheduled for removal in May 2016.
     */
    @Deprecated
    public static <T> UnmodifiableIterator<T> emptyIterator() {
        return emptyListIterator();
    }

    /**
     * Returns the empty iterator.
     *
     * <p>The {@link Iterable} equivalent of this method is {@link
     * ImmutableSet#of()}.
     */
    // Casting to any type is safe since there are no actual elements.
    @SuppressWarnings("unchecked")
    static <T> UnmodifiableListIterator<T> emptyListIterator() {
        return (UnmodifiableListIterator<T>) EMPTY_LIST_ITERATOR;
    }

    private static final Iterator<Object> EMPTY_MODIFIABLE_ITERATOR = new Iterator<Object>() {
        @Override
        public boolean hasNext() {
            return false;
        }

        @Override
        public Object next() {
            throw new NoSuchElementException();
        }

        @Override
        public void remove() {
            checkRemove(false);
        }
    };

    /**
     * Returns the empty {@code Iterator} that throws
     * {@link IllegalStateException} instead of
     * {@link UnsupportedOperationException} on a call to
     * {@link Iterator#remove()}.
     */
    // Casting to any type is safe since there are no actual elements.
    @SuppressWarnings("unchecked")
    static <T> Iterator<T> emptyModifiableIterator() {
        return (Iterator<T>) EMPTY_MODIFIABLE_ITERATOR;
    }

    /** Returns an unmodifiable view of {@code iterator}. */
    public static <T> UnmodifiableIterator<T> unmodifiableIterator(final Iterator<T> iterator) {
        checkNotNull(iterator);
        if (iterator instanceof UnmodifiableIterator) {
            return (UnmodifiableIterator<T>) iterator;
        }
        return new UnmodifiableIterator<T>() {
            @Override
            public boolean hasNext() {
                return iterator.hasNext();
            }

            @Override
            public T next() {
                return iterator.next();
            }
        };
    }

    /**
     * Simply returns its argument.
     *
     * @deprecated no need to use this
     * @since 10.0
     */
    @Deprecated
    public static <T> UnmodifiableIterator<T> unmodifiableIterator(UnmodifiableIterator<T> iterator) {
        return checkNotNull(iterator);
    }

    /**
     * Returns the number of elements remaining in {@code iterator}. The iterator
     * will be left exhausted: its {@code hasNext()} method will return
     * {@code false}.
     */
    public static int size(Iterator<?> iterator) {
        int count = 0;
        while (iterator.hasNext()) {
            iterator.next();
            count++;
        }
        return count;
    }

    /**
     * Returns {@code true} if {@code iterator} contains {@code element}.
     */
    public static boolean contains(Iterator<?> iterator, @Nullable Object element) {
        return any(iterator, equalTo(element));
    }

    /**
     * Traverses an iterator and removes every element that belongs to the
     * provided collection. The iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}.
     *
     * @param removeFrom the iterator to (potentially) remove elements from
     * @param elementsToRemove the elements to remove
     * @return {@code true} if any element was removed from {@code iterator}
     */
    public static boolean removeAll(Iterator<?> removeFrom, Collection<?> elementsToRemove) {
        return removeIf(removeFrom, in(elementsToRemove));
    }

    /**
     * Removes every element that satisfies the provided predicate from the
     * iterator. The iterator will be left exhausted: its {@code hasNext()}
     * method will return {@code false}.
     *
     * @param removeFrom the iterator to (potentially) remove elements from
     * @param predicate a predicate that determines whether an element should
     *     be removed
     * @return {@code true} if any elements were removed from the iterator
     * @since 2.0
     */
    public static <T> boolean removeIf(Iterator<T> removeFrom, Predicate<? super T> predicate) {
        checkNotNull(predicate);
        boolean modified = false;
        while (removeFrom.hasNext()) {
            if (predicate.apply(removeFrom.next())) {
                removeFrom.remove();
                modified = true;
            }
        }
        return modified;
    }

    /**
     * Traverses an iterator and removes every element that does not belong to the
     * provided collection. The iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}.
     *
     * @param removeFrom the iterator to (potentially) remove elements from
     * @param elementsToRetain the elements to retain
     * @return {@code true} if any element was removed from {@code iterator}
     */
    public static boolean retainAll(Iterator<?> removeFrom, Collection<?> elementsToRetain) {
        return removeIf(removeFrom, not(in(elementsToRetain)));
    }

    /**
     * Determines whether two iterators contain equal elements in the same order.
     * More specifically, this method returns {@code true} if {@code iterator1}
     * and {@code iterator2} contain the same number of elements and every element
     * of {@code iterator1} is equal to the corresponding element of
     * {@code iterator2}.
     *
     * <p>Note that this will modify the supplied iterators, since they will have
     * been advanced some number of elements forward.
     */
    public static boolean elementsEqual(Iterator<?> iterator1, Iterator<?> iterator2) {
        while (iterator1.hasNext()) {
            if (!iterator2.hasNext()) {
                return false;
            }
            Object o1 = iterator1.next();
            Object o2 = iterator2.next();
            if (!Objects.equal(o1, o2)) {
                return false;
            }
        }
        return !iterator2.hasNext();
    }

    /**
     * Returns a string representation of {@code iterator}, with the format
     * {@code [e1, e2, ..., en]}. The iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}.
     */
    public static String toString(Iterator<?> iterator) {
        return Collections2.STANDARD_JOINER.appendTo(new StringBuilder().append('['), iterator).append(']')
                .toString();
    }

    /**
     * Returns the single element contained in {@code iterator}.
     *
     * @throws NoSuchElementException if the iterator is empty
     * @throws IllegalArgumentException if the iterator contains multiple
     *     elements.  The state of the iterator is unspecified.
     */
    public static <T> T getOnlyElement(Iterator<T> iterator) {
        T first = iterator.next();
        if (!iterator.hasNext()) {
            return first;
        }

        StringBuilder sb = new StringBuilder();
        sb.append("expected one element but was: <" + first);
        for (int i = 0; i < 4 && iterator.hasNext(); i++) {
            sb.append(", " + iterator.next());
        }
        if (iterator.hasNext()) {
            sb.append(", ...");
        }
        sb.append('>');

        throw new IllegalArgumentException(sb.toString());
    }

    /**
     * Returns the single element contained in {@code iterator}, or {@code
     * defaultValue} if the iterator is empty.
     *
     * @throws IllegalArgumentException if the iterator contains multiple
     *     elements.  The state of the iterator is unspecified.
     */
    @Nullable
    public static <T> T getOnlyElement(Iterator<? extends T> iterator, @Nullable T defaultValue) {
        return iterator.hasNext() ? getOnlyElement(iterator) : defaultValue;
    }

    /**
     * Copies an iterator's elements into an array. The iterator will be left
     * exhausted: its {@code hasNext()} method will return {@code false}.
     *
     * @param iterator the iterator to copy
     * @param type the type of the elements
     * @return a newly-allocated array into which all the elements of the iterator
     *         have been copied
     */
    @GwtIncompatible("Array.newInstance(Class, int)")
    public static <T> T[] toArray(Iterator<? extends T> iterator, Class<T> type) {
        List<T> list = Lists.newArrayList(iterator);
        return Iterables.toArray(list, type);
    }

    /**
     * Adds all elements in {@code iterator} to {@code collection}. The iterator
     * will be left exhausted: its {@code hasNext()} method will return
     * {@code false}.
     *
     * @return {@code true} if {@code collection} was modified as a result of this
     *         operation
     */
    public static <T> boolean addAll(Collection<T> addTo, Iterator<? extends T> iterator) {
        checkNotNull(addTo);
        checkNotNull(iterator);
        boolean wasModified = false;
        while (iterator.hasNext()) {
            wasModified |= addTo.add(iterator.next());
        }
        return wasModified;
    }

    /**
     * Returns the number of elements in the specified iterator that equal the
     * specified object. The iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}.
     *
     * @see Collections#frequency
     */
    public static int frequency(Iterator<?> iterator, @Nullable Object element) {
        return size(filter(iterator, equalTo(element)));
    }

    /**
     * Returns an iterator that cycles indefinitely over the elements of {@code
     * iterable}.
     *
     * <p>The returned iterator supports {@code remove()} if the provided iterator
     * does. After {@code remove()} is called, subsequent cycles omit the removed
     * element, which is no longer in {@code iterable}. The iterator's
     * {@code hasNext()} method returns {@code true} until {@code iterable} is
     * empty.
     *
     * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an
     * infinite loop. You should use an explicit {@code break} or be certain that
     * you will eventually remove all the elements.
     */
    public static <T> Iterator<T> cycle(final Iterable<T> iterable) {
        checkNotNull(iterable);
        return new Iterator<T>() {
            Iterator<T> iterator = emptyModifiableIterator();

            @Override
            public boolean hasNext() {
                /*
                 * Don't store a new Iterator until we know the user can't remove() the last returned
                 * element anymore. Otherwise, when we remove from the old iterator, we may be invalidating
                 * the new one. The result is a ConcurrentModificationException or other bad behavior.
                 *
                 * (If we decide that we really, really hate allocating two Iterators per cycle instead of
                 * one, we can optimistically store the new Iterator and then be willing to throw it out if
                 * the user calls remove().)
                 */
                return iterator.hasNext() || iterable.iterator().hasNext();
            }

            @Override
            public T next() {
                if (!iterator.hasNext()) {
                    iterator = iterable.iterator();
                    if (!iterator.hasNext()) {
                        throw new NoSuchElementException();
                    }
                }
                return iterator.next();
            }

            @Override
            public void remove() {
                iterator.remove();
            }
        };
    }

    /**
     * Returns an iterator that cycles indefinitely over the provided elements.
     *
     * <p>The returned iterator supports {@code remove()}. After {@code remove()}
     * is called, subsequent cycles omit the removed
     * element, but {@code elements} does not change. The iterator's
     * {@code hasNext()} method returns {@code true} until all of the original
     * elements have been removed.
     *
     * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an
     * infinite loop. You should use an explicit {@code break} or be certain that
     * you will eventually remove all the elements.
     */
    public static <T> Iterator<T> cycle(T... elements) {
        return cycle(Lists.newArrayList(elements));
    }

    /**
     * Combines two iterators into a single iterator. The returned iterator
     * iterates across the elements in {@code a}, followed by the elements in
     * {@code b}. The source iterators are not polled until necessary.
     *
     * <p>The returned iterator supports {@code remove()} when the corresponding
     * input iterator supports it.
     *
     * <p><b>Note:</b> the current implementation is not suitable for nested
     * concatenated iterators, i.e. the following should be avoided when in a loop:
     * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the
     * resulting iterator has a cubic complexity to the depth of the nesting.
     */
    public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b) {
        checkNotNull(a);
        checkNotNull(b);
        return concat(new ConsumingQueueIterator<Iterator<? extends T>>(a, b));
    }

    /**
     * Combines three iterators into a single iterator. The returned iterator
     * iterates across the elements in {@code a}, followed by the elements in
     * {@code b}, followed by the elements in {@code c}. The source iterators
     * are not polled until necessary.
     *
     * <p>The returned iterator supports {@code remove()} when the corresponding
     * input iterator supports it.
     *
     * <p><b>Note:</b> the current implementation is not suitable for nested
     * concatenated iterators, i.e. the following should be avoided when in a loop:
     * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the
     * resulting iterator has a cubic complexity to the depth of the nesting.
     */
    public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b,
            Iterator<? extends T> c) {
        checkNotNull(a);
        checkNotNull(b);
        checkNotNull(c);
        return concat(new ConsumingQueueIterator<Iterator<? extends T>>(a, b, c));
    }

    /**
     * Combines four iterators into a single iterator. The returned iterator
     * iterates across the elements in {@code a}, followed by the elements in
     * {@code b}, followed by the elements in {@code c}, followed by the elements
     * in {@code d}. The source iterators are not polled until necessary.
     *
     * <p>The returned iterator supports {@code remove()} when the corresponding
     * input iterator supports it.
     *
     * <p><b>Note:</b> the current implementation is not suitable for nested
     * concatenated iterators, i.e. the following should be avoided when in a loop:
     * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the
     * resulting iterator has a cubic complexity to the depth of the nesting.
     */
    public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b, Iterator<? extends T> c,
            Iterator<? extends T> d) {
        checkNotNull(a);
        checkNotNull(b);
        checkNotNull(c);
        checkNotNull(d);
        return concat(new ConsumingQueueIterator<Iterator<? extends T>>(a, b, c, d));
    }

    /**
     * Combines multiple iterators into a single iterator. The returned iterator
     * iterates across the elements of each iterator in {@code inputs}. The input
     * iterators are not polled until necessary.
     *
     * <p>The returned iterator supports {@code remove()} when the corresponding
     * input iterator supports it.
     *
     * <p><b>Note:</b> the current implementation is not suitable for nested
     * concatenated iterators, i.e. the following should be avoided when in a loop:
     * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the
     * resulting iterator has a cubic complexity to the depth of the nesting.
     *
     * @throws NullPointerException if any of the provided iterators is null
     */
    public static <T> Iterator<T> concat(Iterator<? extends T>... inputs) {
        for (Iterator<? extends T> input : checkNotNull(inputs)) {
            checkNotNull(input);
        }
        return concat(new ConsumingQueueIterator<Iterator<? extends T>>(inputs));
    }

    /**
     * Combines multiple iterators into a single iterator. The returned iterator
     * iterates across the elements of each iterator in {@code inputs}. The input
     * iterators are not polled until necessary.
     *
     * <p>The returned iterator supports {@code remove()} when the corresponding
     * input iterator supports it. The methods of the returned iterator may throw
     * {@code NullPointerException} if any of the input iterators is null.
     *
     * <p><b>Note:</b> the current implementation is not suitable for nested
     * concatenated iterators, i.e. the following should be avoided when in a loop:
     * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the
     * resulting iterator has a cubic complexity to the depth of the nesting.
     */
    public static <T> Iterator<T> concat(final Iterator<? extends Iterator<? extends T>> inputs) {
        checkNotNull(inputs);
        return new Iterator<T>() {
            Iterator<? extends T> current = emptyIterator();
            Iterator<? extends T> removeFrom;

            @Override
            public boolean hasNext() {
                // http://code.google.com/p/google-collections/issues/detail?id=151
                // current.hasNext() might be relatively expensive, worth minimizing.
                boolean currentHasNext;
                // checkNotNull eager for GWT
                // note: it must be here & not where 'current' is assigned,
                // because otherwise we'll have called inputs.next() before throwing
                // the first NPE, and the next time around we'll call inputs.next()
                // again, incorrectly moving beyond the error.
                while (!(currentHasNext = checkNotNull(current).hasNext()) && inputs.hasNext()) {
                    current = inputs.next();
                }
                return currentHasNext;
            }

            @Override
            public T next() {
                if (!hasNext()) {
                    throw new NoSuchElementException();
                }
                removeFrom = current;
                return current.next();
            }

            @Override
            public void remove() {
                checkRemove(removeFrom != null);
                removeFrom.remove();
                removeFrom = null;
            }
        };
    }

    /**
     * Divides an iterator into unmodifiable sublists of the given size (the final
     * list may be smaller). For example, partitioning an iterator containing
     * {@code [a, b, c, d, e]} with a partition size of 3 yields {@code
     * [[a, b, c], [d, e]]} -- an outer iterator containing two inner lists of
     * three and two elements, all in the original order.
     *
     * <p>The returned lists implement {@link java.util.RandomAccess}.
     *
     * @param iterator the iterator to return a partitioned view of
     * @param size the desired size of each partition (the last may be smaller)
     * @return an iterator of immutable lists containing the elements of {@code
     *     iterator} divided into partitions
     * @throws IllegalArgumentException if {@code size} is nonpositive
     */
    public static <T> UnmodifiableIterator<List<T>> partition(Iterator<T> iterator, int size) {
        return partitionImpl(iterator, size, false);
    }

    /**
     * Divides an iterator into unmodifiable sublists of the given size, padding
     * the final iterator with null values if necessary. For example, partitioning
     * an iterator containing {@code [a, b, c, d, e]} with a partition size of 3
     * yields {@code [[a, b, c], [d, e, null]]} -- an outer iterator containing
     * two inner lists of three elements each, all in the original order.
     *
     * <p>The returned lists implement {@link java.util.RandomAccess}.
     *
     * @param iterator the iterator to return a partitioned view of
     * @param size the desired size of each partition
     * @return an iterator of immutable lists containing the elements of {@code
     *     iterator} divided into partitions (the final iterable may have
     *     trailing null elements)
     * @throws IllegalArgumentException if {@code size} is nonpositive
     */
    public static <T> UnmodifiableIterator<List<T>> paddedPartition(Iterator<T> iterator, int size) {
        return partitionImpl(iterator, size, true);
    }

    private static <T> UnmodifiableIterator<List<T>> partitionImpl(final Iterator<T> iterator, final int size,
            final boolean pad) {
        checkNotNull(iterator);
        checkArgument(size > 0);
        return new UnmodifiableIterator<List<T>>() {
            @Override
            public boolean hasNext() {
                return iterator.hasNext();
            }

            @Override
            public List<T> next() {
                if (!hasNext()) {
                    throw new NoSuchElementException();
                }
                Object[] array = new Object[size];
                int count = 0;
                for (; count < size && iterator.hasNext(); count++) {
                    array[count] = iterator.next();
                }
                for (int i = count; i < size; i++) {
                    array[i] = null; // for GWT
                }

                @SuppressWarnings("unchecked") // we only put Ts in it
                List<T> list = Collections.unmodifiableList((List<T>) Arrays.asList(array));
                return (pad || count == size) ? list : list.subList(0, count);
            }
        };
    }

    /**
     * Returns the elements of {@code unfiltered} that satisfy the input predicate
     * {@code retainIfTrue}.
     */
    @CheckReturnValue
    public static <T> UnmodifiableIterator<T> filter(final Iterator<T> unfiltered,
            final Predicate<? super T> retainIfTrue) {
        checkNotNull(unfiltered);
        checkNotNull(retainIfTrue);
        return new AbstractIterator<T>() {
            @Override
            protected T computeNext() {
                while (unfiltered.hasNext()) {
                    T element = unfiltered.next();
                    if (retainIfTrue.apply(element)) {
                        return element;
                    }
                }
                return endOfData();
            }
        };
    }

    /**
     * Returns all elements in {@code unfiltered} that are of the type {@code desiredType}.
     *
     * @param unfiltered an iterator containing objects of any type, to be filtered on
     * @param desiredType the type of elements desired in the result iterator
     * @return an unmodifiable iterator containing all elements of the original
     *     iterator that were of the requested type
     */
    @SuppressWarnings("unchecked") // can cast to <T> because non-Ts are removed
    @GwtIncompatible("Class.isInstance")
    @CheckReturnValue
    public static <T> UnmodifiableIterator<T> filter(Iterator<?> unfiltered, Class<T> desiredType) {
        return (UnmodifiableIterator<T>) filter(unfiltered, instanceOf(desiredType));
    }

    /**
     * Returns {@code true} if one or more elements returned by {@code iterator}
     * satisfy the given predicate.
     */
    public static <T> boolean any(Iterator<T> iterator, Predicate<? super T> predicate) {
        return indexOf(iterator, predicate) != -1;
    }

    /**
     * Returns {@code true} if every element returned by {@code iterator}
     * satisfies the given predicate. If {@code iterator} is empty, {@code true}
     * is returned.
     */
    public static <T> boolean all(Iterator<T> iterator, Predicate<? super T> predicate) {
        checkNotNull(predicate);
        while (iterator.hasNext()) {
            T element = iterator.next();
            if (!predicate.apply(element)) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns the first element in {@code iterator} that satisfies the given
     * predicate; use this method only when such an element is known to exist. If
     * no such element is found, the iterator will be left exhausted: its {@code
     * hasNext()} method will return {@code false}. If it is possible that
     * <i>no</i> element will match, use {@link #tryFind} or {@link
     * #find(Iterator, Predicate, Object)} instead.
     *
     * @throws NoSuchElementException if no element in {@code iterator} matches
     *     the given predicate
     */
    public static <T> T find(Iterator<T> iterator, Predicate<? super T> predicate) {
        return filter(iterator, predicate).next();
    }

    /**
     * Returns the first element in {@code iterator} that satisfies the given
     * predicate. If no such element is found, {@code defaultValue} will be
     * returned from this method and the iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}. Note that this can
     * usually be handled more naturally using {@code
     * tryFind(iterator, predicate).or(defaultValue)}.
     *
     * @since 7.0
     */
    @Nullable
    public static <T> T find(Iterator<? extends T> iterator, Predicate<? super T> predicate,
            @Nullable T defaultValue) {
        return getNext(filter(iterator, predicate), defaultValue);
    }

    /**
     * Returns an {@link Optional} containing the first element in {@code
     * iterator} that satisfies the given predicate, if such an element exists. If
     * no such element is found, an empty {@link Optional} will be returned from
     * this method and the iterator will be left exhausted: its {@code
     * hasNext()} method will return {@code false}.
     *
     * <p><b>Warning:</b> avoid using a {@code predicate} that matches {@code
     * null}. If {@code null} is matched in {@code iterator}, a
     * NullPointerException will be thrown.
     *
     * @since 11.0
     */
    public static <T> Optional<T> tryFind(Iterator<T> iterator, Predicate<? super T> predicate) {
        UnmodifiableIterator<T> filteredIterator = filter(iterator, predicate);
        return filteredIterator.hasNext() ? Optional.of(filteredIterator.next()) : Optional.<T>absent();
    }

    /**
     * Returns the index in {@code iterator} of the first element that satisfies
     * the provided {@code predicate}, or {@code -1} if the Iterator has no such
     * elements.
     *
     * <p>More formally, returns the lowest index {@code i} such that
     * {@code predicate.apply(Iterators.get(iterator, i))} returns {@code true},
     * or {@code -1} if there is no such index.
     *
     * <p>If -1 is returned, the iterator will be left exhausted: its
     * {@code hasNext()} method will return {@code false}.  Otherwise,
     * the iterator will be set to the element which satisfies the
     * {@code predicate}.
     *
     * @since 2.0
     */
    public static <T> int indexOf(Iterator<T> iterator, Predicate<? super T> predicate) {
        checkNotNull(predicate, "predicate");
        for (int i = 0; iterator.hasNext(); i++) {
            T current = iterator.next();
            if (predicate.apply(current)) {
                return i;
            }
        }
        return -1;
    }

    /**
     * Returns an iterator that applies {@code function} to each element of {@code
     * fromIterator}.
     *
     * <p>The returned iterator supports {@code remove()} if the provided iterator
     * does. After a successful {@code remove()} call, {@code fromIterator} no
     * longer contains the corresponding element.
     */
    public static <F, T> Iterator<T> transform(final Iterator<F> fromIterator,
            final Function<? super F, ? extends T> function) {
        checkNotNull(function);
        return new TransformedIterator<F, T>(fromIterator) {
            @Override
            T transform(F from) {
                return function.apply(from);
            }
        };
    }

    /**
     * Advances {@code iterator} {@code position + 1} times, returning the
     * element at the {@code position}th position.
     *
     * @param position position of the element to return
     * @return the element at the specified position in {@code iterator}
     * @throws IndexOutOfBoundsException if {@code position} is negative or
     *     greater than or equal to the number of elements remaining in
     *     {@code iterator}
     */
    public static <T> T get(Iterator<T> iterator, int position) {
        checkNonnegative(position);
        int skipped = advance(iterator, position);
        if (!iterator.hasNext()) {
            throw new IndexOutOfBoundsException("position (" + position
                    + ") must be less than the number of elements that remained (" + skipped + ")");
        }
        return iterator.next();
    }

    static void checkNonnegative(int position) {
        if (position < 0) {
            throw new IndexOutOfBoundsException("position (" + position + ") must not be negative");
        }
    }

    /**
     * Advances {@code iterator} {@code position + 1} times, returning the
     * element at the {@code position}th position or {@code defaultValue}
     * otherwise.
     *
     * @param position position of the element to return
     * @param defaultValue the default value to return if the iterator is empty
     *     or if {@code position} is greater than the number of elements
     *     remaining in {@code iterator}
     * @return the element at the specified position in {@code iterator} or
     *     {@code defaultValue} if {@code iterator} produces fewer than
     *     {@code position + 1} elements.
     * @throws IndexOutOfBoundsException if {@code position} is negative
     * @since 4.0
     */
    @Nullable
    public static <T> T get(Iterator<? extends T> iterator, int position, @Nullable T defaultValue) {
        checkNonnegative(position);
        advance(iterator, position);
        return getNext(iterator, defaultValue);
    }

    /**
     * Returns the next element in {@code iterator} or {@code defaultValue} if
     * the iterator is empty.  The {@link Iterables} analog to this method is
     * {@link Iterables#getFirst}.
     *
     * @param defaultValue the default value to return if the iterator is empty
     * @return the next element of {@code iterator} or the default value
     * @since 7.0
     */
    @Nullable
    public static <T> T getNext(Iterator<? extends T> iterator, @Nullable T defaultValue) {
        return iterator.hasNext() ? iterator.next() : defaultValue;
    }

    /**
     * Advances {@code iterator} to the end, returning the last element.
     *
     * @return the last element of {@code iterator}
     * @throws NoSuchElementException if the iterator is empty
     */
    public static <T> T getLast(Iterator<T> iterator) {
        while (true) {
            T current = iterator.next();
            if (!iterator.hasNext()) {
                return current;
            }
        }
    }

    /**
     * Advances {@code iterator} to the end, returning the last element or
     * {@code defaultValue} if the iterator is empty.
     *
     * @param defaultValue the default value to return if the iterator is empty
     * @return the last element of {@code iterator}
     * @since 3.0
     */
    @Nullable
    public static <T> T getLast(Iterator<? extends T> iterator, @Nullable T defaultValue) {
        return iterator.hasNext() ? getLast(iterator) : defaultValue;
    }

    /**
     * Calls {@code next()} on {@code iterator}, either {@code numberToAdvance} times
     * or until {@code hasNext()} returns {@code false}, whichever comes first.
     *
     * @return the number of elements the iterator was advanced
     * @since 13.0 (since 3.0 as {@code Iterators.skip})
     */
    public static int advance(Iterator<?> iterator, int numberToAdvance) {
        checkNotNull(iterator);
        checkArgument(numberToAdvance >= 0, "numberToAdvance must be nonnegative");

        int i;
        for (i = 0; i < numberToAdvance && iterator.hasNext(); i++) {
            iterator.next();
        }
        return i;
    }

    /**
     * Creates an iterator returning the first {@code limitSize} elements of the
     * given iterator. If the original iterator does not contain that many
     * elements, the returned iterator will have the same behavior as the original
     * iterator. The returned iterator supports {@code remove()} if the original
     * iterator does.
     *
     * @param iterator the iterator to limit
     * @param limitSize the maximum number of elements in the returned iterator
     * @throws IllegalArgumentException if {@code limitSize} is negative
     * @since 3.0
     */
    public static <T> Iterator<T> limit(final Iterator<T> iterator, final int limitSize) {
        checkNotNull(iterator);
        checkArgument(limitSize >= 0, "limit is negative");
        return new Iterator<T>() {
            private int count;

            @Override
            public boolean hasNext() {
                return count < limitSize && iterator.hasNext();
            }

            @Override
            public T next() {
                if (!hasNext()) {
                    throw new NoSuchElementException();
                }
                count++;
                return iterator.next();
            }

            @Override
            public void remove() {
                iterator.remove();
            }
        };
    }

    /**
     * Returns a view of the supplied {@code iterator} that removes each element
     * from the supplied {@code iterator} as it is returned.
     *
     * <p>The provided iterator must support {@link Iterator#remove()} or
     * else the returned iterator will fail on the first call to {@code
     * next}.
     *
     * @param iterator the iterator to remove and return elements from
     * @return an iterator that removes and returns elements from the
     *     supplied iterator
     * @since 2.0
     */
    public static <T> Iterator<T> consumingIterator(final Iterator<T> iterator) {
        checkNotNull(iterator);
        return new UnmodifiableIterator<T>() {
            @Override
            public boolean hasNext() {
                return iterator.hasNext();
            }

            @Override
            public T next() {
                T next = iterator.next();
                iterator.remove();
                return next;
            }

            @Override
            public String toString() {
                return "Iterators.consumingIterator(...)";
            }
        };
    }

    /**
     * Deletes and returns the next value from the iterator, or returns
     * {@code null} if there is no such value.
     */
    @Nullable
    static <T> T pollNext(Iterator<T> iterator) {
        if (iterator.hasNext()) {
            T result = iterator.next();
            iterator.remove();
            return result;
        } else {
            return null;
        }
    }

    // Methods only in Iterators, not in Iterables

    /**
     * Clears the iterator using its remove method.
     */
    static void clear(Iterator<?> iterator) {
        checkNotNull(iterator);
        while (iterator.hasNext()) {
            iterator.next();
            iterator.remove();
        }
    }

    /**
     * Returns an iterator containing the elements of {@code array} in order. The
     * returned iterator is a view of the array; subsequent changes to the array
     * will be reflected in the iterator.
     *
     * <p><b>Note:</b> It is often preferable to represent your data using a
     * collection type, for example using {@link Arrays#asList(Object[])}, making
     * this method unnecessary.
     *
     * <p>The {@code Iterable} equivalent of this method is either {@link
     * Arrays#asList(Object[])}, {@link ImmutableList#copyOf(Object[])}},
     * or {@link ImmutableList#of}.
     */
    public static <T> UnmodifiableIterator<T> forArray(final T... array) {
        return forArray(array, 0, array.length, 0);
    }

    /**
     * Returns a list iterator containing the elements in the specified range of
     * {@code array} in order, starting at the specified index.
     *
     * <p>The {@code Iterable} equivalent of this method is {@code
     * Arrays.asList(array).subList(offset, offset + length).listIterator(index)}.
     */
    static <T> UnmodifiableListIterator<T> forArray(final T[] array, final int offset, int length, int index) {
        checkArgument(length >= 0);
        int end = offset + length;

        // Technically we should give a slightly more descriptive error on overflow
        Preconditions.checkPositionIndexes(offset, end, array.length);
        Preconditions.checkPositionIndex(index, length);
        if (length == 0) {
            return emptyListIterator();
        }

        /*
         * We can't use call the two-arg constructor with arguments (offset, end)
         * because the returned Iterator is a ListIterator that may be moved back
         * past the beginning of the iteration.
         */
        return new AbstractIndexedListIterator<T>(length, index) {
            @Override
            protected T get(int index) {
                return array[offset + index];
            }
        };
    }

    /**
     * Returns an iterator containing only {@code value}.
     *
     * <p>The {@link Iterable} equivalent of this method is {@link
     * Collections#singleton}.
     */
    public static <T> UnmodifiableIterator<T> singletonIterator(@Nullable final T value) {
        return new UnmodifiableIterator<T>() {
            boolean done;

            @Override
            public boolean hasNext() {
                return !done;
            }

            @Override
            public T next() {
                if (done) {
                    throw new NoSuchElementException();
                }
                done = true;
                return value;
            }
        };
    }

    /**
     * Adapts an {@code Enumeration} to the {@code Iterator} interface.
     *
     * <p>This method has no equivalent in {@link Iterables} because viewing an
     * {@code Enumeration} as an {@code Iterable} is impossible. However, the
     * contents can be <i>copied</i> into a collection using {@link
     * Collections#list}.
     */
    public static <T> UnmodifiableIterator<T> forEnumeration(final Enumeration<T> enumeration) {
        checkNotNull(enumeration);
        return new UnmodifiableIterator<T>() {
            @Override
            public boolean hasNext() {
                return enumeration.hasMoreElements();
            }

            @Override
            public T next() {
                return enumeration.nextElement();
            }
        };
    }

    /**
     * Adapts an {@code Iterator} to the {@code Enumeration} interface.
     *
     * <p>The {@code Iterable} equivalent of this method is either {@link
     * Collections#enumeration} (if you have a {@link Collection}), or
     * {@code Iterators.asEnumeration(collection.iterator())}.
     */
    public static <T> Enumeration<T> asEnumeration(final Iterator<T> iterator) {
        checkNotNull(iterator);
        return new Enumeration<T>() {
            @Override
            public boolean hasMoreElements() {
                return iterator.hasNext();
            }

            @Override
            public T nextElement() {
                return iterator.next();
            }
        };
    }

    /**
     * Implementation of PeekingIterator that avoids peeking unless necessary.
     */
    private static class PeekingImpl<E> implements PeekingIterator<E> {

        private final Iterator<? extends E> iterator;
        private boolean hasPeeked;
        private E peekedElement;

        public PeekingImpl(Iterator<? extends E> iterator) {
            this.iterator = checkNotNull(iterator);
        }

        @Override
        public boolean hasNext() {
            return hasPeeked || iterator.hasNext();
        }

        @Override
        public E next() {
            if (!hasPeeked) {
                return iterator.next();
            }
            E result = peekedElement;
            hasPeeked = false;
            peekedElement = null;
            return result;
        }

        @Override
        public void remove() {
            checkState(!hasPeeked, "Can't remove after you've peeked at next");
            iterator.remove();
        }

        @Override
        public E peek() {
            if (!hasPeeked) {
                peekedElement = iterator.next();
                hasPeeked = true;
            }
            return peekedElement;
        }
    }

    /**
     * Returns a {@code PeekingIterator} backed by the given iterator.
     *
     * <p>Calls to the {@code peek} method with no intervening calls to {@code
     * next} do not affect the iteration, and hence return the same object each
     * time. A subsequent call to {@code next} is guaranteed to return the same
     * object again. For example: <pre>   {@code
     *
     *   PeekingIterator<String> peekingIterator =
     *       Iterators.peekingIterator(Iterators.forArray("a", "b"));
     *   String a1 = peekingIterator.peek(); // returns "a"
     *   String a2 = peekingIterator.peek(); // also returns "a"
     *   String a3 = peekingIterator.next(); // also returns "a"}</pre>
     *
     * <p>Any structural changes to the underlying iteration (aside from those
     * performed by the iterator's own {@link PeekingIterator#remove()} method)
     * will leave the iterator in an undefined state.
     *
     * <p>The returned iterator does not support removal after peeking, as
     * explained by {@link PeekingIterator#remove()}.
     *
     * <p>Note: If the given iterator is already a {@code PeekingIterator},
     * it <i>might</i> be returned to the caller, although this is neither
     * guaranteed to occur nor required to be consistent.  For example, this
     * method <i>might</i> choose to pass through recognized implementations of
     * {@code PeekingIterator} when the behavior of the implementation is
     * known to meet the contract guaranteed by this method.
     *
     * <p>There is no {@link Iterable} equivalent to this method, so use this
     * method to wrap each individual iterator as it is generated.
     *
     * @param iterator the backing iterator. The {@link PeekingIterator} assumes
     *     ownership of this iterator, so users should cease making direct calls
     *     to it after calling this method.
     * @return a peeking iterator backed by that iterator. Apart from the
     *     additional {@link PeekingIterator#peek()} method, this iterator behaves
     *     exactly the same as {@code iterator}.
     */
    public static <T> PeekingIterator<T> peekingIterator(Iterator<? extends T> iterator) {
        if (iterator instanceof PeekingImpl) {
            // Safe to cast <? extends T> to <T> because PeekingImpl only uses T
            // covariantly (and cannot be subclassed to add non-covariant uses).
            @SuppressWarnings("unchecked")
            PeekingImpl<T> peeking = (PeekingImpl<T>) iterator;
            return peeking;
        }
        return new PeekingImpl<T>(iterator);
    }

    /**
     * Simply returns its argument.
     *
     * @deprecated no need to use this
     * @since 10.0
     */
    @Deprecated
    public static <T> PeekingIterator<T> peekingIterator(PeekingIterator<T> iterator) {
        return checkNotNull(iterator);
    }

    /**
     * Returns an iterator over the merged contents of all given
     * {@code iterators}, traversing every element of the input iterators.
     * Equivalent entries will not be de-duplicated.
     *
     * <p>Callers must ensure that the source {@code iterators} are in
     * non-descending order as this method does not sort its input.
     *
     * <p>For any equivalent elements across all {@code iterators}, it is
     * undefined which element is returned first.
     *
     * @since 11.0
     */
    @Beta
    public static <T> UnmodifiableIterator<T> mergeSorted(Iterable<? extends Iterator<? extends T>> iterators,
            Comparator<? super T> comparator) {
        checkNotNull(iterators, "iterators");
        checkNotNull(comparator, "comparator");

        return new MergingIterator<T>(iterators, comparator);
    }

    /**
     * An iterator that performs a lazy N-way merge, calculating the next value
     * each time the iterator is polled. This amortizes the sorting cost over the
     * iteration and requires less memory than sorting all elements at once.
     *
     * <p>Retrieving a single element takes approximately O(log(M)) time, where M
     * is the number of iterators. (Retrieving all elements takes approximately
     * O(N*log(M)) time, where N is the total number of elements.)
     */
    private static class MergingIterator<T> extends UnmodifiableIterator<T> {
        final Queue<PeekingIterator<T>> queue;

        public MergingIterator(Iterable<? extends Iterator<? extends T>> iterators,
                final Comparator<? super T> itemComparator) {
            // A comparator that's used by the heap, allowing the heap
            // to be sorted based on the top of each iterator.
            Comparator<PeekingIterator<T>> heapComparator = new Comparator<PeekingIterator<T>>() {
                @Override
                public int compare(PeekingIterator<T> o1, PeekingIterator<T> o2) {
                    return itemComparator.compare(o1.peek(), o2.peek());
                }
            };

            queue = new PriorityQueue<PeekingIterator<T>>(2, heapComparator);

            for (Iterator<? extends T> iterator : iterators) {
                if (iterator.hasNext()) {
                    queue.add(Iterators.peekingIterator(iterator));
                }
            }
        }

        @Override
        public boolean hasNext() {
            return !queue.isEmpty();
        }

        @Override
        public T next() {
            PeekingIterator<T> nextIter = queue.remove();
            T next = nextIter.next();
            if (nextIter.hasNext()) {
                queue.add(nextIter);
            }
            return next;
        }
    }

    /**
     * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
     */
    static <T> ListIterator<T> cast(Iterator<T> iterator) {
        return (ListIterator<T>) iterator;
    }
}