Java tutorial
/* * $# * FOS Weka Sammple app * * Copyright (C) 2013 Feedzai SA * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/gpl-3.0.html>. * #$ */ package com.feedzai.fos.samples.weka; import com.feedzai.fos.api.*; import com.feedzai.fos.impl.weka.config.WekaModelConfig; import com.feedzai.fos.server.remote.api.FOSManagerAdapter; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import weka.classifiers.trees.J48; import java.io.File; import java.rmi.NotBoundException; import java.rmi.RemoteException; import java.util.List; import java.util.Map; import java.util.UUID; /** * FOS Training sample code. * * This code trains a sample model using the @see <a href="http://en.wikipedia.org/wiki/Iris_flower_data_set">Iris flower dataset</a> * * @author Miguel Duarte (miguel.duarte@feedzai.com) */ public class WekaTraining { public static void main(String[] args) throws RemoteException, NotBoundException, FOSException { FOSManagerAdapter manager = FOSManagerAdapter.create("localhost", 5959); List<Attribute> attributes = ImmutableList.of(new NumericAttribute("sepalLength"), new NumericAttribute("sepalWidth"), new NumericAttribute("petalLength"), new NumericAttribute("petalWidth"), new CategoricalAttribute("class", ImmutableList.of("Iris-setosa", "Iris-versicolor", "Iris-virginica"))); Map<String, String> properties = ImmutableMap.of(WekaModelConfig.CLASS_INDEX, "4", WekaModelConfig.CLASSIFIER_IMPL, J48.class.getName()); ModelConfig modelConfig = new ModelConfig(attributes, properties); File trainFile = new File("iris.data"); UUID uuid = manager.trainAndAddFile(modelConfig, trainFile.getAbsolutePath()); System.out.println("Trained model UUID = " + uuid); } }