Java tutorial
/* * Copyright 2012, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.facebook.LinkBench.distributions; import java.util.Properties; import java.util.Random; import org.apache.commons.math3.util.FastMath; import com.oltpbenchmark.benchmarks.linkbench.utils.ConfigUtil; public class LogNormalDistribution implements ProbabilityDistribution { private long min; private long max; private double mu; // mean of the natural log of random variable private double sigma; // standard deviation of natural log of random variable public static final String CONFIG_MEDIAN = "median"; public static final String CONFIG_SIGMA = "sigma"; @Override public void init(long min, long max, Properties props, String keyPrefix) { double sigma = ConfigUtil.getDouble(props, CONFIG_SIGMA); double median = ConfigUtil.getDouble(props, CONFIG_MEDIAN); init(min, max, median, sigma); } /** * * @param min * @param max * @param median the median value of the distribution * @param sigma the standard deviation of the natural log of the variable * @param scale */ public void init(long min, long max, double median, double sigma) { this.min = min; this.max = max; this.mu = FastMath.log(median); this.sigma = sigma; } @Override public double pdf(long id) { throw new RuntimeException("pdf not implemented"); } @Override public double expectedCount(long id) { throw new RuntimeException("expectedCount not implemented"); } @Override public double cdf(long id) { if (id < min) return 0.0; if (id >= max) return 1.0; org.apache.commons.math3.distribution.LogNormalDistribution d = new org.apache.commons.math3.distribution.LogNormalDistribution( mu, sigma); return d.cumulativeProbability(id); } @Override public long choose(Random rng) { long choice = (long) Math.round(FastMath.exp((rng.nextGaussian() * sigma) + mu)); if (choice < min) return min; else if (choice >= max) return max - 1; else return choice; } @Override public long quantile(double p) { throw new RuntimeException("Quantile not implemented"); } }