Java tutorial
/* * BoostingPL - Scalable and Parallel Boosting with MapReduce * Copyright (C) 2012 Ranler Cao findfunaax@gmail.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package boostingPL.boosting; import weka.classifiers.Classifier; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; public class AdaBoostPL implements Classifier { private Classifier[][] classifiers; private double[] corWeights; public AdaBoostPL(Classifier[][] classifiers, double[][] corWeights) { this.classifiers = classifiers; this.corWeights = new double[corWeights[0].length]; for (int i = 0; i < corWeights.length; i++) { for (int j = 0; j < corWeights[i].length; j++) { this.corWeights[j] += corWeights[i][j]; } System.out.println(); } } @Override public void buildClassifier(Instances insts) throws Exception { } @Override public double classifyInstance(Instance inst) throws Exception { int classNum = inst.dataset().classAttribute().numValues(); double[] H = new double[classNum]; for (int j = 0; j < corWeights.length; j++) { int classValue = merge(inst, j, classNum); if (classValue >= 0) { H[classValue] += corWeights[j]; } } return (double) maxIdx(H); } @Override public double[] distributionForInstance(Instance inst) throws Exception { int classNum = inst.dataset().classAttribute().numValues(); double[] H = new double[classNum]; double sum = 0; for (int j = 0; j < corWeights.length; j++) { int classValue = merge(inst, j, classNum); if (classValue >= 0) { H[classValue] += corWeights[j]; sum += corWeights[j]; } } // normalize for (int i = 0; i < H.length; i++) { H[i] /= sum; } return H; } private int merge(Instance inst, int round, int classNum) throws Exception { int[] sum = new int[classNum]; for (int i = 0; i < classifiers.length; i++) { int classIdx = (int) classifiers[i][round].classifyInstance(inst); sum[classIdx] += 1; } return maxIdx(sum); } private int maxIdx(int[] a) { int max = -1; int maxIdx = 0; for (int i = 0; i < a.length; i++) { if (a[i] > max) { maxIdx = i; max = a[i]; } else if (a[i] > 0 && a[i] == max) { // more than two classes have same vote return -1; } } return maxIdx; } private int maxIdx(double[] a) { double max = -1; int maxIdx = 0; for (int i = 0; i < a.length; i++) { if (a[i] > max) { maxIdx = i; max = a[i]; } else if (a[i] > 0 && a[i] == max) { // more than two classes have same vote return -1; } } return maxIdx; } @Override public Capabilities getCapabilities() { // TODO Auto-generated method stub return null; } }