boosting.classifiers.DecisionStumpWritable.java Source code

Java tutorial

Introduction

Here is the source code for boosting.classifiers.DecisionStumpWritable.java

Source

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    DecisionStump.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package boosting.classifiers;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Sourcable;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;

/**
 <!-- globalinfo-start -->
 * Class for building and using a decision stump. Usually used in conjunction with a boosting algorithm. Does regression (based on mean-squared error) or classification (based on entropy). Missing is treated as a separate value.
 * <p/>
 <!-- globalinfo-end -->
 *
 * Typical usage: <p>
 * <code>java weka.classifiers.meta.LogitBoost -I 100 -W weka.classifiers.trees.DecisionStump 
 * -t training_data </code><p>
 * 
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 * 
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision: 5928 $
 */
public class DecisionStumpWritable extends AbstractClassifier
        implements WeightedInstancesHandler, Sourcable, Writable {

    /** for serialization */
    static final long serialVersionUID = 1618384535950391L;

    /** The attribute used for classification. */
    private int m_AttIndex;

    /** The split point (index respectively). */
    private double m_SplitPoint;

    /** The distribution of class values or the means in each subset. */
    private double[][] m_Distribution;

    /** The instances used for training. */
    private Instances m_Instances;

    /** a ZeroR model in case no model can be built from the data */
    private Classifier m_ZeroR;

    /**
     * Returns a string describing classifier
     * @return a description suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {

        return "Class for building and using a decision stump. Usually used in "
                + "conjunction with a boosting algorithm. Does regression (based on "
                + "mean-squared error) or classification (based on entropy). Missing "
                + "is treated as a separate value.";
    }

    /**
     * Returns default capabilities of the classifier.
     *
     * @return      the capabilities of this classifier
     */
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.NUMERIC_CLASS);
        result.enable(Capability.DATE_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Generates the classifier.
     *
     * @param instances set of instances serving as training data 
     * @throws Exception if the classifier has not been generated successfully
     */
    public void buildClassifier(Instances instances) throws Exception {

        double bestVal = Double.MAX_VALUE, currVal;
        double bestPoint = -Double.MAX_VALUE;
        int bestAtt = -1, numClasses;

        // can classifier handle the data?
        getCapabilities().testWithFail(instances);

        // remove instances with missing class
        instances = new Instances(instances);
        instances.deleteWithMissingClass();

        // only class? -> build ZeroR model
        if (instances.numAttributes() == 1) {
            System.err.println(
                    "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
            m_ZeroR = new weka.classifiers.rules.ZeroR();
            m_ZeroR.buildClassifier(instances);
            return;
        } else {
            m_ZeroR = null;
        }

        double[][] bestDist = new double[3][instances.numClasses()];

        m_Instances = new Instances(instances);

        if (m_Instances.classAttribute().isNominal()) {
            numClasses = m_Instances.numClasses();
        } else {
            numClasses = 1;
        }

        // For each attribute
        boolean first = true;
        for (int i = 0; i < m_Instances.numAttributes(); i++) {
            if (i != m_Instances.classIndex()) {

                // Reserve space for distribution.
                m_Distribution = new double[3][numClasses];

                // Compute value of criterion for best split on attribute
                if (m_Instances.attribute(i).isNominal()) {
                    currVal = findSplitNominal(i);
                } else {
                    currVal = findSplitNumeric(i);
                }
                if ((first) || (currVal < bestVal)) {
                    bestVal = currVal;
                    bestAtt = i;
                    bestPoint = m_SplitPoint;
                    for (int j = 0; j < 3; j++) {
                        System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, numClasses);
                    }
                }

                // First attribute has been investigated
                first = false;
            }
        }

        // Set attribute, split point and distribution.
        m_AttIndex = bestAtt;
        m_SplitPoint = bestPoint;
        m_Distribution = bestDist;
        if (m_Instances.classAttribute().isNominal()) {
            for (int i = 0; i < m_Distribution.length; i++) {
                double sumCounts = Utils.sum(m_Distribution[i]);
                if (sumCounts == 0) { // This means there were only missing attribute values
                    System.arraycopy(m_Distribution[2], 0, m_Distribution[i], 0, m_Distribution[2].length);
                    Utils.normalize(m_Distribution[i]);
                } else {
                    Utils.normalize(m_Distribution[i], sumCounts);
                }
            }
        }

        // Save memory
        m_Instances = new Instances(m_Instances, 0);
    }

    /**
     * Calculates the class membership probabilities for the given test instance.
     *
     * @param instance the instance to be classified
     * @return predicted class probability distribution
     * @throws Exception if distribution can't be computed
     */
    public double[] distributionForInstance(Instance instance) throws Exception {

        // default model?
        if (m_ZeroR != null) {
            return m_ZeroR.distributionForInstance(instance);
        }

        return m_Distribution[whichSubset(instance)];
    }

    /**
     * Returns the decision tree as Java source code.
     *
     * @param className the classname of the generated code
     * @return the tree as Java source code
     * @throws Exception if something goes wrong
     */
    public String toSource(String className) throws Exception {

        StringBuffer text = new StringBuffer("class ");
        Attribute c = m_Instances.classAttribute();
        text.append(className).append(" {\n" + "  public static double classify(Object[] i) {\n");
        text.append("    /* " + m_Instances.attribute(m_AttIndex).name() + " */\n");
        text.append("    if (i[").append(m_AttIndex);
        text.append("] == null) { return ");
        text.append(sourceClass(c, m_Distribution[2])).append(";");
        if (m_Instances.attribute(m_AttIndex).isNominal()) {
            text.append(" } else if (((String)i[").append(m_AttIndex);
            text.append("]).equals(\"");
            text.append(m_Instances.attribute(m_AttIndex).value((int) m_SplitPoint));
            text.append("\")");
        } else {
            text.append(" } else if (((Double)i[").append(m_AttIndex);
            text.append("]).doubleValue() <= ").append(m_SplitPoint);
        }
        text.append(") { return ");
        text.append(sourceClass(c, m_Distribution[0])).append(";");
        text.append(" } else { return ");
        text.append(sourceClass(c, m_Distribution[1])).append(";");
        text.append(" }\n  }\n}\n");
        return text.toString();
    }

    /**
     * Returns the value as string out of the given distribution
     * 
     * @param c the attribute to get the value for
     * @param dist the distribution to extract the value
     * @return the value
     */
    private String sourceClass(Attribute c, double[] dist) {

        if (c.isNominal()) {
            return Integer.toString(Utils.maxIndex(dist));
        } else {
            return Double.toString(dist[0]);
        }
    }

    /**
     * Returns a description of the classifier.
     *
     * @return a description of the classifier as a string.
     */
    public String toString() {

        // only ZeroR model?
        if (m_ZeroR != null) {
            StringBuffer buf = new StringBuffer();
            buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n");
            buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n");
            buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n");
            buf.append(m_ZeroR.toString());
            return buf.toString();
        }

        if (m_Instances == null) {
            return "Decision Stump: No model built yet.";
        }
        try {
            StringBuffer text = new StringBuffer();

            text.append("Decision Stump\n\n");
            text.append("Classifications\n\n");
            Attribute att = m_Instances.attribute(m_AttIndex);
            if (att.isNominal()) {
                text.append(att.name() + " = " + att.value((int) m_SplitPoint) + " : ");
                text.append(printClass(m_Distribution[0]));
                text.append(att.name() + " != " + att.value((int) m_SplitPoint) + " : ");
                text.append(printClass(m_Distribution[1]));
            } else {
                text.append(att.name() + " <= " + m_SplitPoint + " : ");
                text.append(printClass(m_Distribution[0]));
                text.append(att.name() + " > " + m_SplitPoint + " : ");
                text.append(printClass(m_Distribution[1]));
            }
            text.append(att.name() + " is missing : ");
            text.append(printClass(m_Distribution[2]));

            if (m_Instances.classAttribute().isNominal()) {
                text.append("\nClass distributions\n\n");
                if (att.isNominal()) {
                    text.append(att.name() + " = " + att.value((int) m_SplitPoint) + "\n");
                    text.append(printDist(m_Distribution[0]));
                    text.append(att.name() + " != " + att.value((int) m_SplitPoint) + "\n");
                    text.append(printDist(m_Distribution[1]));
                } else {
                    text.append(att.name() + " <= " + m_SplitPoint + "\n");
                    text.append(printDist(m_Distribution[0]));
                    text.append(att.name() + " > " + m_SplitPoint + "\n");
                    text.append(printDist(m_Distribution[1]));
                }
                text.append(att.name() + " is missing\n");
                text.append(printDist(m_Distribution[2]));
            }

            return text.toString();
        } catch (Exception e) {
            return "Can't print decision stump classifier!";
        }
    }

    /** 
     * Prints a class distribution.
     *
     * @param dist the class distribution to print
     * @return the distribution as a string
     * @throws Exception if distribution can't be printed
     */
    private String printDist(double[] dist) throws Exception {

        StringBuffer text = new StringBuffer();

        if (m_Instances.classAttribute().isNominal()) {
            for (int i = 0; i < m_Instances.numClasses(); i++) {
                text.append(m_Instances.classAttribute().value(i) + "\t");
            }
            text.append("\n");
            for (int i = 0; i < m_Instances.numClasses(); i++) {
                text.append(dist[i] + "\t");
            }
            text.append("\n");
        }

        return text.toString();
    }

    /** 
     * Prints a classification.
     *
     * @param dist the class distribution
     * @return the classificationn as a string
     * @throws Exception if the classification can't be printed
     */
    private String printClass(double[] dist) throws Exception {

        StringBuffer text = new StringBuffer();

        if (m_Instances.classAttribute().isNominal()) {
            text.append(m_Instances.classAttribute().value(Utils.maxIndex(dist)));
        } else {
            text.append(dist[0]);
        }

        return text.toString() + "\n";
    }

    /**
     * Finds best split for nominal attribute and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNominal(int index) throws Exception {

        if (m_Instances.classAttribute().isNominal()) {
            return findSplitNominalNominal(index);
        } else {
            return findSplitNominalNumeric(index);
        }
    }

    /**
     * Finds best split for nominal attribute and nominal class
     * and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNominalNominal(int index) throws Exception {

        double bestVal = Double.MAX_VALUE, currVal;
        double[][] counts = new double[m_Instances.attribute(index).numValues() + 1][m_Instances.numClasses()];
        double[] sumCounts = new double[m_Instances.numClasses()];
        double[][] bestDist = new double[3][m_Instances.numClasses()];
        int numMissing = 0;

        // Compute counts for all the values
        for (int i = 0; i < m_Instances.numInstances(); i++) {
            Instance inst = m_Instances.instance(i);
            if (inst.isMissing(index)) {
                numMissing++;
                counts[m_Instances.attribute(index).numValues()][(int) inst.classValue()] += inst.weight();
            } else {
                counts[(int) inst.value(index)][(int) inst.classValue()] += inst.weight();
            }
        }

        // Compute sum of counts
        for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
            for (int j = 0; j < m_Instances.numClasses(); j++) {
                sumCounts[j] += counts[i][j];
            }
        }

        // Make split counts for each possible split and evaluate
        System.arraycopy(counts[m_Instances.attribute(index).numValues()], 0, m_Distribution[2], 0,
                m_Instances.numClasses());
        for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
            for (int j = 0; j < m_Instances.numClasses(); j++) {
                m_Distribution[0][j] = counts[i][j];
                m_Distribution[1][j] = sumCounts[j] - counts[i][j];
            }
            currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution);
            if (currVal < bestVal) {
                bestVal = currVal;
                m_SplitPoint = (double) i;
                for (int j = 0; j < 3; j++) {
                    System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, m_Instances.numClasses());
                }
            }
        }

        // No missing values in training data.
        if (numMissing == 0) {
            System.arraycopy(sumCounts, 0, bestDist[2], 0, m_Instances.numClasses());
        }

        m_Distribution = bestDist;
        return bestVal;
    }

    /**
     * Finds best split for nominal attribute and numeric class
     * and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNominalNumeric(int index) throws Exception {

        double bestVal = Double.MAX_VALUE, currVal;
        double[] sumsSquaresPerValue = new double[m_Instances.attribute(index).numValues()],
                sumsPerValue = new double[m_Instances.attribute(index).numValues()],
                weightsPerValue = new double[m_Instances.attribute(index).numValues()];
        double totalSumSquaresW = 0, totalSumW = 0, totalSumOfWeightsW = 0, totalSumOfWeights = 0, totalSum = 0;
        double[] sumsSquares = new double[3], sumOfWeights = new double[3];
        double[][] bestDist = new double[3][1];

        // Compute counts for all the values
        for (int i = 0; i < m_Instances.numInstances(); i++) {
            Instance inst = m_Instances.instance(i);
            if (inst.isMissing(index)) {
                m_Distribution[2][0] += inst.classValue() * inst.weight();
                sumsSquares[2] += inst.classValue() * inst.classValue() * inst.weight();
                sumOfWeights[2] += inst.weight();
            } else {
                weightsPerValue[(int) inst.value(index)] += inst.weight();
                sumsPerValue[(int) inst.value(index)] += inst.classValue() * inst.weight();
                sumsSquaresPerValue[(int) inst.value(index)] += inst.classValue() * inst.classValue()
                        * inst.weight();
            }
            totalSumOfWeights += inst.weight();
            totalSum += inst.classValue() * inst.weight();
        }

        // Check if the total weight is zero
        if (totalSumOfWeights <= 0) {
            return bestVal;
        }

        // Compute sum of counts without missing ones
        for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
            totalSumOfWeightsW += weightsPerValue[i];
            totalSumSquaresW += sumsSquaresPerValue[i];
            totalSumW += sumsPerValue[i];
        }

        // Make split counts for each possible split and evaluate
        for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {

            m_Distribution[0][0] = sumsPerValue[i];
            sumsSquares[0] = sumsSquaresPerValue[i];
            sumOfWeights[0] = weightsPerValue[i];
            m_Distribution[1][0] = totalSumW - sumsPerValue[i];
            sumsSquares[1] = totalSumSquaresW - sumsSquaresPerValue[i];
            sumOfWeights[1] = totalSumOfWeightsW - weightsPerValue[i];

            currVal = variance(m_Distribution, sumsSquares, sumOfWeights);

            if (currVal < bestVal) {
                bestVal = currVal;
                m_SplitPoint = (double) i;
                for (int j = 0; j < 3; j++) {
                    if (sumOfWeights[j] > 0) {
                        bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j];
                    } else {
                        bestDist[j][0] = totalSum / totalSumOfWeights;
                    }
                }
            }
        }

        m_Distribution = bestDist;
        return bestVal;
    }

    /**
     * Finds best split for numeric attribute and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNumeric(int index) throws Exception {

        if (m_Instances.classAttribute().isNominal()) {
            return findSplitNumericNominal(index);
        } else {
            return findSplitNumericNumeric(index);
        }
    }

    /**
     * Finds best split for numeric attribute and nominal class
     * and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNumericNominal(int index) throws Exception {

        double bestVal = Double.MAX_VALUE, currVal, currCutPoint;
        int numMissing = 0;
        double[] sum = new double[m_Instances.numClasses()];
        double[][] bestDist = new double[3][m_Instances.numClasses()];

        // Compute counts for all the values
        for (int i = 0; i < m_Instances.numInstances(); i++) {
            Instance inst = m_Instances.instance(i);
            if (!inst.isMissing(index)) {
                m_Distribution[1][(int) inst.classValue()] += inst.weight();
            } else {
                m_Distribution[2][(int) inst.classValue()] += inst.weight();
                numMissing++;
            }
        }
        System.arraycopy(m_Distribution[1], 0, sum, 0, m_Instances.numClasses());

        // Save current distribution as best distribution
        for (int j = 0; j < 3; j++) {
            System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, m_Instances.numClasses());
        }

        // Sort instances
        m_Instances.sort(index);

        // Make split counts for each possible split and evaluate
        for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) {
            Instance inst = m_Instances.instance(i);
            Instance instPlusOne = m_Instances.instance(i + 1);
            m_Distribution[0][(int) inst.classValue()] += inst.weight();
            m_Distribution[1][(int) inst.classValue()] -= inst.weight();
            if (inst.value(index) < instPlusOne.value(index)) {
                currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0;
                currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution);
                if (currVal < bestVal) {
                    m_SplitPoint = currCutPoint;
                    bestVal = currVal;
                    for (int j = 0; j < 3; j++) {
                        System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, m_Instances.numClasses());
                    }
                }
            }
        }

        // No missing values in training data.
        if (numMissing == 0) {
            System.arraycopy(sum, 0, bestDist[2], 0, m_Instances.numClasses());
        }

        m_Distribution = bestDist;
        return bestVal;
    }

    /**
     * Finds best split for numeric attribute and numeric class
     * and returns value.
     *
     * @param index attribute index
     * @return value of criterion for the best split
     * @throws Exception if something goes wrong
     */
    private double findSplitNumericNumeric(int index) throws Exception {

        double bestVal = Double.MAX_VALUE, currVal, currCutPoint;
        int numMissing = 0;
        double[] sumsSquares = new double[3], sumOfWeights = new double[3];
        double[][] bestDist = new double[3][1];
        double totalSum = 0, totalSumOfWeights = 0;

        // Compute counts for all the values
        for (int i = 0; i < m_Instances.numInstances(); i++) {
            Instance inst = m_Instances.instance(i);
            if (!inst.isMissing(index)) {
                m_Distribution[1][0] += inst.classValue() * inst.weight();
                sumsSquares[1] += inst.classValue() * inst.classValue() * inst.weight();
                sumOfWeights[1] += inst.weight();
            } else {
                m_Distribution[2][0] += inst.classValue() * inst.weight();
                sumsSquares[2] += inst.classValue() * inst.classValue() * inst.weight();
                sumOfWeights[2] += inst.weight();
                numMissing++;
            }
            totalSumOfWeights += inst.weight();
            totalSum += inst.classValue() * inst.weight();
        }

        // Check if the total weight is zero
        if (totalSumOfWeights <= 0) {
            return bestVal;
        }

        // Sort instances
        m_Instances.sort(index);

        // Make split counts for each possible split and evaluate
        for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) {
            Instance inst = m_Instances.instance(i);
            Instance instPlusOne = m_Instances.instance(i + 1);
            m_Distribution[0][0] += inst.classValue() * inst.weight();
            sumsSquares[0] += inst.classValue() * inst.classValue() * inst.weight();
            sumOfWeights[0] += inst.weight();
            m_Distribution[1][0] -= inst.classValue() * inst.weight();
            sumsSquares[1] -= inst.classValue() * inst.classValue() * inst.weight();
            sumOfWeights[1] -= inst.weight();
            if (inst.value(index) < instPlusOne.value(index)) {
                currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0;
                currVal = variance(m_Distribution, sumsSquares, sumOfWeights);
                if (currVal < bestVal) {
                    m_SplitPoint = currCutPoint;
                    bestVal = currVal;
                    for (int j = 0; j < 3; j++) {
                        if (sumOfWeights[j] > 0) {
                            bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j];
                        } else {
                            bestDist[j][0] = totalSum / totalSumOfWeights;
                        }
                    }
                }
            }
        }

        m_Distribution = bestDist;
        return bestVal;
    }

    /**
     * Computes variance for subsets.
     * 
     * @param s
     * @param sS
     * @param sumOfWeights
     * @return the variance
     */
    private double variance(double[][] s, double[] sS, double[] sumOfWeights) {

        double var = 0;

        for (int i = 0; i < s.length; i++) {
            if (sumOfWeights[i] > 0) {
                var += sS[i] - ((s[i][0] * s[i][0]) / (double) sumOfWeights[i]);
            }
        }

        return var;
    }

    /**
     * Returns the subset an instance falls into.
     * 
     * @param instance the instance to check
     * @return the subset the instance falls into
     * @throws Exception if something goes wrong
     */
    private int whichSubset(Instance instance) throws Exception {

        if (instance.isMissing(m_AttIndex)) {
            return 2;
        } else if (instance.attribute(m_AttIndex).isNominal()) {
            if ((int) instance.value(m_AttIndex) == m_SplitPoint) {
                return 0;
            } else {
                return 1;
            }
        } else {
            if (instance.value(m_AttIndex) <= m_SplitPoint) {
                return 0;
            } else {
                return 1;
            }
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 5928 $");
    }

    /**
     * Main method for testing this class.
     *
     * @param argv the options
     */
    public static void main(String[] argv) {
        runClassifier(new DecisionStumpWritable(), argv);
    }

    /**
     * ===================================================
     * For BoostingPL on Hadoop
     * 
     */

    int m_numClasses;

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(m_AttIndex);
        out.writeDouble(m_SplitPoint);
        out.writeInt(m_numClasses);
        for (int i = 0; i < m_Distribution.length; i++) {
            for (int j = 0; j < m_Distribution[i].length; j++) {
                out.writeDouble(m_Distribution[i][j]);
            }
        }
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        m_AttIndex = in.readInt();
        m_SplitPoint = in.readDouble();
        m_numClasses = in.readInt();
        m_Distribution = new double[3][m_numClasses];
        for (int i = 0; i < m_Distribution.length; i++) {
            for (int j = 0; j < m_Distribution[i].length; j++) {
                m_Distribution[i][j] = in.readDouble();
            }
        }
    }
}