adams.flow.transformer.WekaPrimeForecaster.java Source code

Java tutorial

Introduction

Here is the source code for adams.flow.transformer.WekaPrimeForecaster.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * WekaPrimeForecaster.java
 * Copyright (C) 2013-2016 University of Waikato, Hamilton, New Zealand
 */

package adams.flow.transformer;

import adams.core.MessageCollection;
import weka.classifiers.timeseries.AbstractForecaster;
import weka.classifiers.timeseries.core.IncrementallyPrimeable;
import weka.core.Instance;
import weka.core.Instances;
import adams.core.QuickInfoHelper;
import adams.flow.container.WekaModelContainer;
import adams.flow.core.CallableActorReference;
import adams.flow.core.CallableActorHelper;
import adams.flow.core.Token;
import adams.flow.provenance.ActorType;
import adams.flow.provenance.Provenance;
import adams.flow.provenance.ProvenanceContainer;
import adams.flow.provenance.ProvenanceInformation;
import adams.flow.provenance.ProvenanceSupporter;
import adams.flow.source.WekaForecasterSetup;

/**
 <!-- globalinfo-start -->
 * Primes a forecaster with the incoming data and outputs the updated forecaster alongside the training header (in a model container).
 * <br><br>
 <!-- globalinfo-end -->
 *
 <!-- flow-summary-start -->
 * Input&#47;output:<br>
 * - accepts:<br>
 * &nbsp;&nbsp;&nbsp;weka.core.Instances<br>
 * &nbsp;&nbsp;&nbsp;weka.core.Instance<br>
 * - generates:<br>
 * &nbsp;&nbsp;&nbsp;adams.flow.container.WekaModelContainer<br>
 * <br><br>
 * Container information:<br>
 * - adams.flow.container.WekaModelContainer: Model, Header, Dataset
 * <br><br>
 <!-- flow-summary-end -->
 *
 <!-- options-start -->
 * <pre>-logging-level &lt;OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST&gt; (property: loggingLevel)
 * &nbsp;&nbsp;&nbsp;The logging level for outputting errors and debugging output.
 * &nbsp;&nbsp;&nbsp;default: WARNING
 * </pre>
 * 
 * <pre>-name &lt;java.lang.String&gt; (property: name)
 * &nbsp;&nbsp;&nbsp;The name of the actor.
 * &nbsp;&nbsp;&nbsp;default: WekaPrimeForecaster
 * </pre>
 * 
 * <pre>-annotation &lt;adams.core.base.BaseText&gt; (property: annotations)
 * &nbsp;&nbsp;&nbsp;The annotations to attach to this actor.
 * &nbsp;&nbsp;&nbsp;default: 
 * </pre>
 * 
 * <pre>-skip &lt;boolean&gt; (property: skip)
 * &nbsp;&nbsp;&nbsp;If set to true, transformation is skipped and the input token is just forwarded 
 * &nbsp;&nbsp;&nbsp;as it is.
 * &nbsp;&nbsp;&nbsp;default: false
 * </pre>
 * 
 * <pre>-stop-flow-on-error &lt;boolean&gt; (property: stopFlowOnError)
 * &nbsp;&nbsp;&nbsp;If set to true, the flow gets stopped in case this actor encounters an error;
 * &nbsp;&nbsp;&nbsp; useful for critical actors.
 * &nbsp;&nbsp;&nbsp;default: false
 * </pre>
 * 
 * <pre>-forecaster &lt;adams.flow.core.CallableActorReference&gt; (property: forecaster)
 * &nbsp;&nbsp;&nbsp;The Weka forecaster to prime on the input data; can be a adams.flow.container.WekaModelContainer 
 * &nbsp;&nbsp;&nbsp;or a weka.classifiers.timeseries.AbstractForecaster.
 * &nbsp;&nbsp;&nbsp;default: WekaForecasterSetup
 * </pre>
 * 
 <!-- options-end -->
 *
 * @author  fracpete (fracpete at waikato dot ac dot nz)
 * @version $Revision$
 */
public class WekaPrimeForecaster extends AbstractTransformer implements ProvenanceSupporter {

    /** for serialization. */
    private static final long serialVersionUID = -3019442578354930841L;

    /** the name of the callable weka forecaster. */
    protected CallableActorReference m_Forecaster;

    /**
     * Returns a string describing the object.
     *
     * @return          a description suitable for displaying in the gui
     */
    @Override
    public String globalInfo() {
        return "Primes a forecaster with the incoming data and outputs the "
                + "updated forecaster alongside the training header (in a model container).";
    }

    /**
     * Adds options to the internal list of options.
     */
    @Override
    public void defineOptions() {
        super.defineOptions();

        m_OptionManager.add("forecaster", "forecaster",
                new CallableActorReference(WekaForecasterSetup.class.getSimpleName()));
    }

    /**
     * Sets the name of the callable forecaster to use.
     *
     * @param value   the name
     */
    public void setForecaster(CallableActorReference value) {
        m_Forecaster = value;
        reset();
    }

    /**
     * Returns the name of the callable forecaster in use.
     *
     * @return      the name
     */
    public CallableActorReference getForecaster() {
        return m_Forecaster;
    }

    /**
     * Returns the tip text for this property.
     *
     * @return       tip text for this property suitable for
     *          displaying in the GUI or for listing the options.
     */
    public String forecasterTipText() {
        return "The Weka forecaster to prime on the input data; can be a " + WekaModelContainer.class.getName()
                + " or a " + AbstractForecaster.class.getName() + ".";
    }

    /**
     * Returns a quick info about the actor, which will be displayed in the GUI.
     *
     * @return      null if no info available, otherwise short string
     */
    @Override
    public String getQuickInfo() {
        return QuickInfoHelper.toString(this, "forecaster", m_Forecaster);
    }

    /**
     * Returns the class that the consumer accepts.
     *
     * @return      <!-- flow-accepts-start -->weka.core.Instances.class, weka.core.Instance.class<!-- flow-accepts-end -->
     */
    public Class[] accepts() {
        return new Class[] { Instances.class, Instance.class };
    }

    /**
     * Returns the class of objects that it generates.
     *
     * @return      <!-- flow-generates-start -->adams.flow.container.WekaModelContainer.class<!-- flow-generates-end -->
     */
    public Class[] generates() {
        return new Class[] { WekaModelContainer.class };
    }

    /**
     * Returns an instance of the callable forecaster.
     *
     * @return      the forecaster
     */
    protected AbstractForecaster getForecasterInstance() {
        AbstractForecaster result;
        Object obj;
        MessageCollection errors;

        result = null;

        errors = new MessageCollection();
        obj = CallableActorHelper.getSetup(Object.class, m_Forecaster, this, errors);
        if (obj == null) {
            if (!errors.isEmpty())
                getLogger().severe(errors.toString());
        } else {
            if (obj instanceof WekaModelContainer)
                result = (AbstractForecaster) ((WekaModelContainer) obj).getValue(WekaModelContainer.VALUE_MODEL);
            else if (obj instanceof AbstractForecaster)
                result = (AbstractForecaster) obj;
        }

        return result;
    }

    /**
     * Executes the flow item.
     *
     * @return      null if everything is fine, otherwise error message
     */
    @Override
    protected String doExecute() {
        String result;
        Instances data;
        Instance inst;
        AbstractForecaster cls;

        result = null;

        try {
            cls = getForecasterInstance();
            if (cls == null)
                result = "Failed to obtain forecaster!";

            if (result == null) {
                if ((m_InputToken != null) && (m_InputToken.getPayload() instanceof Instances)) {
                    data = (Instances) m_InputToken.getPayload();
                    cls.primeForecaster(data);
                    m_OutputToken = new Token(new WekaModelContainer(cls, new Instances(data, 0), data));
                } else if ((m_InputToken != null) && (m_InputToken.getPayload() instanceof Instance)) {
                    inst = (Instance) m_InputToken.getPayload();
                    data = inst.dataset();
                    if (cls instanceof IncrementallyPrimeable) {
                        ((IncrementallyPrimeable) cls).primeForecasterIncremental(inst);
                        m_OutputToken = new Token(new WekaModelContainer(cls, new Instances(data, 0), data));
                    } else {
                        result = m_Forecaster.getValue() + " (= " + cls.getClass().getName()
                                + ") does not implement " + IncrementallyPrimeable.class.getName()
                                + "! Cannot prime incrementally!";
                    }
                }
            }
        } catch (Exception e) {
            m_OutputToken = null;
            result = handleException("Failed to process data:", e);
        }

        if (m_OutputToken != null)
            updateProvenance(m_OutputToken);

        return result;
    }

    /**
     * Updates the provenance information in the provided container.
     *
     * @param cont   the provenance container to update
     */
    public void updateProvenance(ProvenanceContainer cont) {
        if (Provenance.getSingleton().isEnabled()) {
            if (m_InputToken.hasProvenance())
                cont.setProvenance(m_InputToken.getProvenance().getClone());
            cont.addProvenance(new ProvenanceInformation(ActorType.MODEL_GENERATOR,
                    m_InputToken.getPayload().getClass(), this, m_OutputToken.getPayload().getClass()));
        }
    }
}