activeSegmentation.feature.FeatureExtraction.java Source code

Java tutorial

Introduction

Here is the source code for activeSegmentation.feature.FeatureExtraction.java

Source

package activeSegmentation.feature;

import java.awt.Point;
import java.awt.Polygon;
import java.awt.Rectangle;
import java.util.ArrayList;

import java.util.List;
import java.util.Vector;

import activeSegmentation.Common;
import activeSegmentation.IDataSet;
import activeSegmentation.IFeature;
import activeSegmentation.IFilterManager;
import activeSegmentation.learning.WekaDataSet;
import weka.core.Attribute;
import weka.core.Instances;
import ij.IJ;
import ij.ImagePlus;
import ij.gui.Roi;

/**
 *             
 *   
 * 
 * @author Sumit Kumar Vohra and Dimiter Prodanov , IMEC
 *
 *
 * @contents
 *  Feature extration at Pixel Level
 * 
 * 
 * @license This library is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU Lesser General Public
 *      License as published by the Free Software Foundation; either
 *      version 2.1 of the License, or (at your option) any later version.
 *
 *      This library is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *       Lesser General Public License for more details.
 *
 *      You should have received a copy of the GNU Lesser General Public
 *      License along with this library; if not, write to the Free Software
 *      Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

public class FeatureExtraction implements IFeature {

    private IFilterManager filterManager;

    private Instances trainingData;

    private String featureName = "pixelLevel";
    private ImagePlus originalImage;

    public FeatureExtraction(IFilterManager filterManager, ImagePlus originalImage) {

        this.filterManager = filterManager;
        this.originalImage = originalImage;
    }

    /**
     * Create training instances out of the user markings
     * @return set of instances (feature vectors in Weka format)
     */
    @Override
    public void createTrainingInstance(List<String> classLabels, int classes,
            List<Vector<ArrayList<Roi>>> examples) {
        ArrayList<Attribute> attributes = createFeatureHeader();
        attributes.add(new Attribute(Common.CLASS, addClasstoHeader(classes, classLabels)));

        // create initial set of instances
        trainingData = new Instances(Common.INSTANCE_NAME, attributes, 1);
        // Set the index of the class attribute
        trainingData.setClassIndex(filterManager.getNumOfFeatures());
        for (int classIndex = 0; classIndex < classes; classIndex++) {
            int nl = 0;

            // Read all lists of examples
            for (int sliceNum = 1; sliceNum <= filterManager.getOriginalImageSize(); sliceNum++)
                for (int j = 0; j < examples.get(sliceNum - 1).get(classIndex).size(); j++) {
                    Roi r = examples.get(sliceNum - 1).get(classIndex).get(j);
                    nl += addRectangleRoiInstances(trainingData, classIndex, sliceNum, r);
                }
            IJ.log("# of pixels selected as " + classLabels.get(classIndex) + ": " + nl);
        }

    }

    /**
     * Add training samples from a rectangular roi
     * 
     * @param trainingData set of instances to add to
     * @param classIndex class index value
     * @param sliceNum number of 2d slice being processed
     * @param r shape roi
     * @return number of instances added
     */
    private int addRectangleRoiInstances(final Instances trainingData, int classIndex, int sliceNum, Roi r) {
        int numInstances = 0;

        final Rectangle rect = r.getBounds();
        final Polygon poly = r.getPolygon();
        final int x0 = rect.x;
        final int y0 = rect.y;

        final int lastX = x0 + rect.width;
        final int lastY = y0 + rect.height;

        for (int x = x0; x < lastX; x++)
            for (int y = y0; y < lastY; y++) {

                if (poly.contains(new Point(x0, y0))) {
                    trainingData.add(filterManager.createInstance(x, y, classIndex, sliceNum));
                }
                // increase number of instances for this class
                numInstances++;
            }
        return numInstances;
    }

    private ArrayList<Attribute> createFeatureHeader() {
        ArrayList<Attribute> attributes = new ArrayList<Attribute>();
        for (int i = 1; i <= filterManager.getNumOfFeatures(); i++) {
            String attString = filterManager.getLabel(i);
            attributes.add(new Attribute(attString));
        }

        return attributes;
    }

    private ArrayList<String> addClasstoHeader(int numClasses, List<String> classLabels) {
        ArrayList<String> classes = null;

        classes = new ArrayList<String>();
        for (int i = 0; i < numClasses; i++) {
            for (int n = 0; n < filterManager.getOriginalImageSize(); n++) {
                if (classes.contains(classLabels.get(i)) == false)
                    classes.add(classLabels.get(i));
            }
        }

        return classes;

    }

    @Override
    public List<IDataSet> createAllInstance(List<String> classLabels, int classes) {
        List<IDataSet> dataSets = new ArrayList<IDataSet>();

        // Read all lists of examples
        for (int sliceNum = 1; sliceNum <= filterManager.getOriginalImageSize(); sliceNum++) {

            dataSets.add(new WekaDataSet(addRectangleRoiInstances(sliceNum, classLabels, classes)));

        }

        return dataSets;
    }

    /**
     * Add training samples from a rectangular roi
     * 
     * @param trainingData set of instances to add to
     * @param classIndex class index value
     * @param sliceNum number of 2d slice being processed
     * @param r shape roi
     * @return number of instances added
     */
    private Instances addRectangleRoiInstances(int sliceNum, List<String> classLabels, int classes) {

        Instances testingData;
        ArrayList<Attribute> attributes = createFeatureHeader();
        attributes.add(new Attribute(Common.CLASS, addClasstoHeader(classes, classLabels)));
        System.out.println(attributes.toString());
        // create initial set of instances
        testingData = new Instances(Common.INSTANCE_NAME, attributes, 1);
        // Set the index of the class attribute
        testingData.setClassIndex(filterManager.getNumOfFeatures());

        for (int x = 0; x < originalImage.getWidth(); x++) {
            for (int y = 0; y < originalImage.getHeight(); y++) {

                testingData.add(filterManager.createInstance(x, y, 0, sliceNum));

            }
        }
        // increase number of instances for this class

        System.out.println("SIZe" + testingData.size());
        System.out.println(testingData.get(1).toString());
        return testingData;
    }

    @Override
    public String getFeatureName() {
        // TODO Auto-generated method stub
        return featureName;
    }

    @Override
    public IDataSet getDataSet() {
        // TODO Auto-generated method stub

        System.out.println(trainingData.toString());
        return new WekaDataSet(trainingData);
    }

    @Override
    public void setDataset(IDataSet trainingData) {
        // TODO Auto-generated method stub
        this.trainingData = trainingData.getDataset();

    }

}