Java tutorial
/***************************************************************************** ** ANGRYBIRDS AI AGENT FRAMEWORK ** Copyright (c) 2014, XiaoYu (Gary) Ge, Stephen Gould, Jochen Renz ** Sahan Abeyasinghe,Jim Keys, Andrew Wang, Peng Zhang ** All rights reserved. **This work is licensed under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. **To view a copy of this license, visit http://www.gnu.org/licenses/ *****************************************************************************/ package ab.demo; import java.awt.Point; import java.awt.Rectangle; import java.awt.image.BufferedImage; import java.io.BufferedWriter; import java.io.FileWriter; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.Random; import weka.classifiers.bayes.NaiveBayes; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import ab.demo.other.ActionRobot; import ab.demo.other.Shot; import ab.planner.TrajectoryPlanner; import ab.utils.StateUtil; import ab.vision.ABObject; import ab.vision.ABType; import ab.vision.GameStateExtractor.GameState; import ab.vision.Vision; public class AIAssignment2 implements Runnable { private ActionRobot aRobot; private Random randomGenerator; public int currentLevel = 1; public static int time_limit = 12; private Map<Integer, Integer> scores = new LinkedHashMap<Integer, Integer>(); TrajectoryPlanner tp; private boolean firstShot; private Point prevTarget; // a standalone implementation of the Naive Agent public AIAssignment2() { aRobot = new ActionRobot(); tp = new TrajectoryPlanner(); prevTarget = null; firstShot = true; randomGenerator = new Random(); // --- go to the Poached Eggs episode level selection page --- ActionRobot.GoFromMainMenuToLevelSelection(); } // run the client public void run() { aRobot.loadLevel(currentLevel); while (true) { GameState state = solve(); if (state == GameState.WON) { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } int score = StateUtil.getScore(ActionRobot.proxy); if (!scores.containsKey(currentLevel)) scores.put(currentLevel, score); else { if (scores.get(currentLevel) < score) scores.put(currentLevel, score); } int totalScore = 0; for (Integer key : scores.keySet()) { totalScore += scores.get(key); System.out.println(" Level " + key + " Score: " + scores.get(key) + " "); } System.out.println("Total Score: " + totalScore); aRobot.loadLevel(++currentLevel); // make a new trajectory planner whenever a new level is entered tp = new TrajectoryPlanner(); // first shot on this level, try high shot first firstShot = true; } else if (state == GameState.LOST) { System.out.println("Restart"); aRobot.restartLevel(); } else if (state == GameState.LEVEL_SELECTION) { System.out .println("Unexpected level selection page, go to the last current level : " + currentLevel); aRobot.loadLevel(currentLevel); } else if (state == GameState.MAIN_MENU) { System.out.println("Unexpected main menu page, go to the last current level : " + currentLevel); ActionRobot.GoFromMainMenuToLevelSelection(); aRobot.loadLevel(currentLevel); } else if (state == GameState.EPISODE_MENU) { System.out.println("Unexpected episode menu page, go to the last current level : " + currentLevel); ActionRobot.GoFromMainMenuToLevelSelection(); aRobot.loadLevel(currentLevel); } } } private double distance(Point p1, Point p2) { return Math.sqrt((double) ((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y))); } public GameState solve() { // capture Image BufferedImage screenshot = ActionRobot.doScreenShot(); // process image Vision vision = new Vision(screenshot); // find the slingshot Rectangle sling = vision.findSlingshotMBR(); // confirm the slingshot while (sling == null && aRobot.getState() == GameState.PLAYING) { System.out.println("No slingshot detected. Please remove pop up or zoom out"); ActionRobot.fullyZoomOut(); screenshot = ActionRobot.doScreenShot(); vision = new Vision(screenshot); sling = vision.findSlingshotMBR(); } // get all the pigs List<ABObject> pigs = vision.findPigsMBR(); List<ABObject> blocks = vision.findBlocksMBR(); GameState state = aRobot.getState(); // if there is a sling, then play, otherwise just skip. if (sling != null) { if (!pigs.isEmpty()) { //if there are pigs in the level Point releasePoint = null; Shot shot = new Shot(); int dx, dy; { //random pick up a pig ABObject pig = pigs.get(randomGenerator.nextInt(pigs.size())); Point _tpt = pig.getCenter(); // estimate the trajectory ArrayList<Point> pts = tp.estimateLaunchPoint(sling, _tpt); //define all of the wood, ice and stone in the stage ArrayList<ABObject> wood = new ArrayList<ABObject>(); ArrayList<ABObject> stone = new ArrayList<ABObject>(); ArrayList<ABObject> ice = new ArrayList<ABObject>(); ArrayList<ABObject> tnt = new ArrayList<ABObject>(); //initialise counters to store how many times the trajectory intersects blocks of these types int woodCount = 0; int stoneCount = 0; int iceCount = 0; int pigsCount = 0; int tntCount = 0; //populate the wood, stone and ice ArrayLists with the correct materials for (int i = 0; i < blocks.size(); i++) { if (blocks.get(i).type == ABType.Wood) wood.add(blocks.get(i)); if (blocks.get(i).type == ABType.Stone) stone.add(blocks.get(i)); if (blocks.get(i).type == ABType.Ice) ice.add(blocks.get(i)); if (blocks.get(i).type == ABType.TNT) tnt.add(blocks.get(i)); } //check whether the trajectory intersects any wood blocks for (int i = 0; i < wood.size(); i++) { for (int j = 0; j < pts.size(); j++) { if (wood.get(i).contains(pts.get(j))) { System.out.println("Trajectory intersects some wood"); woodCount++; } if (pig.contains(pts.get(j))) //if we find the pig on this point j = pts.size() - 1; //stop looking for wood on the trajectory (escape for loop) } } //check whether the trajectory intersects any ice blocks for (int i = 0; i < ice.size(); i++) { for (int j = 0; j < pts.size(); j++) { if (ice.get(i).contains(pts.get(j))) { System.out.println("Trajectory intersects some ice"); iceCount++; } if (pig.contains(pts.get(j))) //if we find the pig on this point j = pts.size() - 1; //stop looking for ice on the trajectory (escape for loop) } } //check whether the trajectory intersects any stone blocks for (int i = 0; i < stone.size(); i++) { for (int j = 0; j < pts.size(); j++) { if (stone.get(i).contains(pts.get(j))) { System.out.println("Trajectory intersects some stone"); stoneCount++; } if (pig.contains(pts.get(j))) //if we find the pig on this point j = pts.size() - 1; //stop looking for stone on the trajectory (escape for loop) } } //how many pigs the trajectory intersects (this should always be at least 1) for (int i = 0; i < pigs.size(); i++) { for (int j = 0; j < pts.size(); j++) { if (pigs.get(i).contains(pts.get(j))) { System.out.println("Trajectory intersects a pig"); pigsCount++; } } } //how many tnt blocks the trajectory intersects for (int i = 0; i < tnt.size(); i++) { for (int j = 0; j < pts.size(); j++) { if (tnt.get(i).contains(pts.get(j))) { System.out.println("Trajectory intersects some tnt"); tntCount++; } if (pig.contains(pts.get(j))) //if we find the pig on this point j = pts.size() - 1; //stop looking for tnt on the trajectory } } StringBuilder sb = new StringBuilder(); sb.append(pigsCount + "," + woodCount + "," + iceCount + "," + stoneCount + "," + tntCount + ",?"); String dataEntry = sb.toString(); try (PrintWriter out = new PrintWriter( new BufferedWriter(new FileWriter("dataset/birds.level.arff", true)))) { out.println(dataEntry); } catch (IOException e) { System.out.println("Error - dataset/birds.level.arff file not found or in use!"); } //indicator of if the agent should continue this shot or not (used in the bayes classifier) ArrayList<Boolean> takeShot = new ArrayList<Boolean>(); try { DataSource source = new DataSource("dataset/birds.data.arff"); //initialise the learning set for the agent Instances data = source.getDataSet(); // setting class attribute if the data format does not provide this information // For example, the XRFF format saves the class attribute information as well if (data.classIndex() == -1) data.setClassIndex(data.numAttributes() - 1); DataSource thisLevel = new DataSource("dataset/birds.level.arff"); //initialise the data retrieved from the current level for the agent Instances thisLevelData = thisLevel.getDataSet(); if (thisLevelData.classIndex() == -1) thisLevelData.setClassIndex(data.numAttributes() - 1); //build a new NaiveBayes classifier NaiveBayes bayes = new NaiveBayes(); bayes.buildClassifier(data); for (int i = 0; i < thisLevelData.numInstances(); i++) { //for all instances in the current level double label = bayes.classifyInstance(thisLevelData.instance(i)); //generate an outcome/classify an instance in the current level thisLevelData.instance(i).setClassValue(label); //store this outcome System.out.println(thisLevelData.instance(i).stringValue(5)); //print it if (thisLevelData.instance(i).stringValue(5) != "?") { //if there is a decisive choice as to whether a shot should be taken data.add(thisLevelData.instance(i)); //store it if (thisLevelData.instance(i).stringValue(5) == "yes") {//if the classifier classifies a good shot, store it takeShot.add(true); } else { //if no, store this too takeShot.add(false); } } } //add all non ? entries to the learning set BufferedWriter writer = new BufferedWriter(new FileWriter("dataset/birds.data.arff")); writer.write(data.toString()); writer.flush(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.out.println("Exception caught - file handle error"); } //TODO: roll a random number to determine whether we take a shot or not. //populated using the bayesian classification above. //if we roll true, continue with the random pig shot as usual. //if not, take a new random pig and try again. //TODO: implement a failsafe so the agent does not get stuck randomly choosing pigs which the bayesian classification does not allow. Random rng = new Random(takeShot.size()); if (takeShot.get(rng.nextInt())) System.out.println("Taking this shot."); else { System.out.println("Not taking this shot. Finding another random pig."); return state; } // if the target is very close to before, randomly choose a // point near it if (prevTarget != null && distance(prevTarget, _tpt) < 10) { double _angle = randomGenerator.nextDouble() * Math.PI * 2; _tpt.x = _tpt.x + (int) (Math.cos(_angle) * 10); _tpt.y = _tpt.y + (int) (Math.sin(_angle) * 10); System.out.println("Randomly changing to " + _tpt); } prevTarget = new Point(_tpt.x, _tpt.y); // do a high shot when entering a level to find an accurate velocity if (firstShot && pts.size() > 1) { releasePoint = pts.get(1); } else if (pts.size() == 1) releasePoint = pts.get(0); else if (pts.size() == 2) { // randomly choose between the trajectories, with a 1 in // 6 chance of choosing the high one if (randomGenerator.nextInt(6) == 0) releasePoint = pts.get(1); else releasePoint = pts.get(0); } else if (pts.isEmpty()) { System.out.println("No release point found for the target"); System.out.println("Try a shot with 45 degree"); releasePoint = tp.findReleasePoint(sling, Math.PI / 4); } // Get the reference point Point refPoint = tp.getReferencePoint(sling); //Calculate the tapping time according the bird type if (releasePoint != null) { double releaseAngle = tp.getReleaseAngle(sling, releasePoint); System.out.println("Release Point: " + releasePoint); System.out.println("Release Angle: " + Math.toDegrees(releaseAngle)); int tapInterval = 0; switch (aRobot.getBirdTypeOnSling()) { case RedBird: tapInterval = 0; break; // start of trajectory case YellowBird: tapInterval = 65 + randomGenerator.nextInt(25); break; // 65-90% of the way case WhiteBird: tapInterval = 70 + randomGenerator.nextInt(20); break; // 70-90% of the way case BlackBird: tapInterval = 70 + randomGenerator.nextInt(20); break; // 70-90% of the way case BlueBird: tapInterval = 65 + randomGenerator.nextInt(20); break; // 65-85% of the way default: tapInterval = 60; } int tapTime = tp.getTapTime(sling, releasePoint, _tpt, tapInterval); dx = (int) releasePoint.getX() - refPoint.x; dy = (int) releasePoint.getY() - refPoint.y; shot = new Shot(refPoint.x, refPoint.y, dx, dy, 0, tapTime); } else { System.err.println("No Release Point Found"); return state; } } // check whether the slingshot is changed. the change of the slingshot indicates a change in the scale. { ActionRobot.fullyZoomOut(); screenshot = ActionRobot.doScreenShot(); vision = new Vision(screenshot); Rectangle _sling = vision.findSlingshotMBR(); if (_sling != null) { double scale_diff = Math.pow((sling.width - _sling.width), 2) + Math.pow((sling.height - _sling.height), 2); if (scale_diff < 25) { if (dx < 0) { aRobot.cshoot(shot); state = aRobot.getState(); if (state == GameState.PLAYING) { screenshot = ActionRobot.doScreenShot(); vision = new Vision(screenshot); List<Point> traj = vision.findTrajPoints(); tp.adjustTrajectory(traj, sling, releasePoint); firstShot = false; } } } else System.out.println( "Scale is changed, can not execute the shot, will re-segement the image"); } else System.out .println("no sling detected, can not execute the shot, will re-segement the image"); } } } return state; } public static void main(String args[]) { AIAssignment2 na = new AIAssignment2(); if (args.length > 0) na.currentLevel = Integer.parseInt(args[0]); na.run(); } }