Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package AaronTest; import development.TimeSeriesClassification; import weka.classifiers.lazy.IBk; import weka.classifiers.meta.Bagging; import weka.core.Instances; import weka.core.shapelet.QualityMeasures; import weka.filters.timeseries.shapelet_transforms.FullShapeletTransform; import weka.filters.timeseries.shapelet_transforms.ShapeletTransform; import weka.filters.timeseries.shapelet_transforms.ShapeletTransformDistCaching; /** * * @author raj09hxu */ public class TransformEnsembleExperiments { public static void main(String[] args) { //for each dataset. Run the test harness. for (String ucrTiny : LocalInfo.ucrTiny) { EnsembleTestHarness(ucrTiny); } } public static void EnsembleTestHarness(String dataName) { //names of the transforms available Class[] classList = { FullShapeletTransform.class, ShapeletTransform.class, ShapeletTransformDistCaching.class }; //qualityMeasures available. QualityMeasures.ShapeletQualityChoice[] qualityMeasures = { QualityMeasures.ShapeletQualityChoice.F_STAT, QualityMeasures.ShapeletQualityChoice.INFORMATION_GAIN }; //[transformType][qualityMeasure][TRAIN/TEST] Instances[][][] dataSets = new Instances[classList.length][qualityMeasures.length][2]; LocalInfo.LoadData(dataName, dataSets, classList, qualityMeasures); for (int i = 0; i < classList.length; i++) { for (int j = 0; j < qualityMeasures.length; j++) { ensembleTest(dataSets[i][j][0], dataSets[i][j][1]); } } } public static void ensembleTest(Instances train, Instances test) { //create a bagging ensemble and give it 1-NN as a base. Bagging bag = new Bagging(); bag.setClassifier(new IBk(1)); //train our bag try { bag.buildClassifier(train); } catch (Exception ex) { System.out.println("Ex: " + ex); } double average = utilities.ClassifierTools.accuracy(test, bag); System.out.println("Average correct = " + average); } }