Java tutorial
import java.awt.AlphaComposite; import java.awt.BorderLayout; import java.awt.Color; import java.awt.Composite; import java.awt.CompositeContext; import java.awt.Dimension; import java.awt.FlowLayout; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsEnvironment; import java.awt.RenderingHints; import java.awt.Transparency; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.image.BufferedImage; import java.awt.image.ColorModel; import java.awt.image.DataBuffer; import java.awt.image.DirectColorModel; import java.awt.image.Raster; import java.awt.image.RasterFormatException; import java.awt.image.WritableRaster; import java.io.IOException; import java.net.URL; import javax.imageio.ImageIO; import javax.swing.JComboBox; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.JSlider; import javax.swing.SwingUtilities; import javax.swing.event.ChangeEvent; import javax.swing.event.ChangeListener; /** * See {@link org.jdesktop.swingx.graphics.BlendComposite}. * * @author Romain Guy <romain.guy@mac.com> */ public class BlendCompositeDemo extends JFrame { private CompositeTestPanel compositeTestPanel; private JComboBox combo; private JSlider slider; public BlendCompositeDemo() { super("Blend Composites"); compositeTestPanel = new CompositeTestPanel(); compositeTestPanel.setComposite(BlendComposite.Average); add(compositeTestPanel); combo = new JComboBox(BlendComposite.BlendingMode.values()); combo.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { compositeTestPanel.setComposite(BlendComposite.getInstance( BlendComposite.BlendingMode.valueOf(combo.getSelectedItem().toString()), slider.getValue() / 100.0f)); } }); slider = new JSlider(0, 100, 100); slider.addChangeListener(new ChangeListener() { public void stateChanged(ChangeEvent e) { BlendComposite blend = (BlendComposite) compositeTestPanel.getComposite(); blend = blend.derive(slider.getValue() / 100.0f); compositeTestPanel.setComposite(blend); } }); JPanel controls = new JPanel(new FlowLayout(FlowLayout.LEFT)); controls.add(combo); controls.add(new JLabel("0%")); controls.add(slider); controls.add(new JLabel("100%")); add(controls, BorderLayout.SOUTH); pack(); setLocationRelativeTo(null); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); } private static class CompositeTestPanel extends JPanel { private BufferedImage image = null; private Composite composite = AlphaComposite.Src; private BufferedImage imageA; private BufferedImage imageB; private boolean repaint = false; public CompositeTestPanel() { setOpaque(false); try { imageA = GraphicsUtilities.loadCompatibleImage(getClass().getResource("A.jpg")); imageB = GraphicsUtilities.loadCompatibleImage(getClass().getResource("B.jpg")); } catch (IOException e) { e.printStackTrace(); } } @Override public Dimension getPreferredSize() { return new Dimension(imageA.getWidth(), imageA.getHeight()); } @Override protected void paintComponent(Graphics g) { if (image == null) { image = new BufferedImage(imageA.getWidth(), imageA.getHeight(), BufferedImage.TYPE_INT_ARGB); repaint = true; } if (repaint) { Graphics2D g2 = image.createGraphics(); g2.setComposite(AlphaComposite.Clear); g2.fillRect(0, 0, image.getWidth(), image.getHeight()); g2.setComposite(AlphaComposite.Src); g2.drawImage(imageA, 0, 0, null); g2.setComposite(getComposite()); g2.drawImage(imageB, 0, 0, null); g2.dispose(); repaint = false; } int x = (getWidth() - image.getWidth()) / 2; int y = (getHeight() - image.getHeight()) / 2; g.drawImage(image, x, y, null); } public void setComposite(Composite composite) { if (composite != null) { this.composite = composite; this.repaint = true; repaint(); } } public Composite getComposite() { return this.composite; } } public static void main(String... args) { SwingUtilities.invokeLater(new Runnable() { public void run() { new BlendCompositeDemo().setVisible(true); } }); } } /* * $Id: BlendComposite.java,v 1.9 2007/02/28 01:21:29 gfx Exp $ * * Dual-licensed under LGPL (Sun and Romain Guy) and BSD (Romain Guy). * * Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, * Santa Clara, California 95054, U.S.A. All rights reserved. * * Copyright (c) 2006 Romain Guy <romain.guy@mac.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * <p>A blend composite defines the rule according to which a drawing primitive * (known as the source) is mixed with existing graphics (know as the * destination.)</p> * <p><code>BlendComposite</code> is an implementation of the * {@link java.awt.Composite} interface and must therefore be set as a state on * a {@link java.awt.Graphics2D} surface.</p> * <p>Please refer to {@link java.awt.Graphics2D#setComposite(java.awt.Composite)} * for more information on how to use this class with a graphics surface.</p> * <h2>Blending Modes</h2> * <p>This class offers a certain number of blending modes, or compositing * rules. These rules are inspired from graphics editing software packages, * like <em>Adobe Photoshop</em> or <em>The GIMP</em>.</p> * <p>Given the wide variety of implemented blending modes and the difficulty * to describe them with words, please refer to those tools to visually see * the result of these blending modes.</p> * <h2>Opacity</h2> * <p>Each blending mode has an associated opacity, defined as a float value * between 0.0 and 1.0. Changing the opacity controls the force with which the * compositing operation is applied. For instance, a composite with an opacity * of 0.0 will not draw the source onto the destination. With an opacity of * 1.0, the source will be fully drawn onto the destination, according to the * selected blending mode rule.</p> * <p>The opacity, or alpha value, is used by the composite instance to mutiply * the alpha value of each pixel of the source when being composited over the * destination.</p> * <h2>Creating a Blend Composite</h2> * <p>Blend composites can be created in various manners:</p> * <ul> * <li>Use one of the pre-defined instance. Example: * <code>BlendComposite.Average</code>.</li> * <li>Derive one of the pre-defined instances by calling * {@link #derive(float)} or {@link #derive(BlendingMode)}. Deriving allows * you to change either the opacity or the blending mode. Example: * <code>BlendComposite.Average.derive(0.5f)</code>.</li> * <li>Use a factory method: {@link #getInstance(BlendingMode)} or * {@link #getInstance(BlendingMode, float)}.</li> * </ul> * <h2>Implementation Caveat</h2> * <p>TThe blending mode <em>SoftLight</em> has not been implemented yet.</p> * * @see java.awt.Graphics2D * @see java.awt.Composite * @see java.awt.AlphaComposite * @author Romain Guy <romain.guy@mac.com> */ final class BlendComposite implements Composite { /** * <p>A blending mode defines the compositing rule of a * {@link BlendComposite}.</p> * * @author Romain Guy <romain.guy@mac.com> */ public enum BlendingMode { AVERAGE, MULTIPLY, SCREEN, DARKEN, LIGHTEN, OVERLAY, HARD_LIGHT, SOFT_LIGHT, DIFFERENCE, NEGATION, EXCLUSION, COLOR_DODGE, INVERSE_COLOR_DODGE, SOFT_DODGE, COLOR_BURN, INVERSE_COLOR_BURN, SOFT_BURN, REFLECT, GLOW, FREEZE, HEAT, ADD, SUBTRACT, STAMP, RED, GREEN, BLUE, HUE, SATURATION, COLOR, LUMINOSITY } public static final BlendComposite Average = new BlendComposite(BlendingMode.AVERAGE); public static final BlendComposite Multiply = new BlendComposite(BlendingMode.MULTIPLY); public static final BlendComposite Screen = new BlendComposite(BlendingMode.SCREEN); public static final BlendComposite Darken = new BlendComposite(BlendingMode.DARKEN); public static final BlendComposite Lighten = new BlendComposite(BlendingMode.LIGHTEN); public static final BlendComposite Overlay = new BlendComposite(BlendingMode.OVERLAY); public static final BlendComposite HardLight = new BlendComposite(BlendingMode.HARD_LIGHT); public static final BlendComposite SoftLight = new BlendComposite(BlendingMode.SOFT_LIGHT); public static final BlendComposite Difference = new BlendComposite(BlendingMode.DIFFERENCE); public static final BlendComposite Negation = new BlendComposite(BlendingMode.NEGATION); public static final BlendComposite Exclusion = new BlendComposite(BlendingMode.EXCLUSION); public static final BlendComposite ColorDodge = new BlendComposite(BlendingMode.COLOR_DODGE); public static final BlendComposite InverseColorDodge = new BlendComposite(BlendingMode.INVERSE_COLOR_DODGE); public static final BlendComposite SoftDodge = new BlendComposite(BlendingMode.SOFT_DODGE); public static final BlendComposite ColorBurn = new BlendComposite(BlendingMode.COLOR_BURN); public static final BlendComposite InverseColorBurn = new BlendComposite(BlendingMode.INVERSE_COLOR_BURN); public static final BlendComposite SoftBurn = new BlendComposite(BlendingMode.SOFT_BURN); public static final BlendComposite Reflect = new BlendComposite(BlendingMode.REFLECT); public static final BlendComposite Glow = new BlendComposite(BlendingMode.GLOW); public static final BlendComposite Freeze = new BlendComposite(BlendingMode.FREEZE); public static final BlendComposite Heat = new BlendComposite(BlendingMode.HEAT); public static final BlendComposite Add = new BlendComposite(BlendingMode.ADD); public static final BlendComposite Subtract = new BlendComposite(BlendingMode.SUBTRACT); public static final BlendComposite Stamp = new BlendComposite(BlendingMode.STAMP); public static final BlendComposite Red = new BlendComposite(BlendingMode.RED); public static final BlendComposite Green = new BlendComposite(BlendingMode.GREEN); public static final BlendComposite Blue = new BlendComposite(BlendingMode.BLUE); public static final BlendComposite Hue = new BlendComposite(BlendingMode.HUE); public static final BlendComposite Saturation = new BlendComposite(BlendingMode.SATURATION); public static final BlendComposite Color = new BlendComposite(BlendingMode.COLOR); public static final BlendComposite Luminosity = new BlendComposite(BlendingMode.LUMINOSITY); private final float alpha; private final BlendingMode mode; private BlendComposite(BlendingMode mode) { this(mode, 1.0f); } private BlendComposite(BlendingMode mode, float alpha) { this.mode = mode; if (alpha < 0.0f || alpha > 1.0f) { throw new IllegalArgumentException("alpha must be comprised between 0.0f and 1.0f"); } this.alpha = alpha; } /** * <p>Creates a new composite based on the blending mode passed * as a parameter. A default opacity of 1.0 is applied.</p> * * @param mode the blending mode defining the compositing rule * @return a new <code>BlendComposite</code> based on the selected blending * mode, with an opacity of 1.0 */ public static BlendComposite getInstance(BlendingMode mode) { return new BlendComposite(mode); } /** * <p>Creates a new composite based on the blending mode and opacity passed * as parameters. The opacity must be a value between 0.0 and 1.0.</p> * * @param mode the blending mode defining the compositing rule * @param alpha the constant alpha to be multiplied with the alpha of the * source. <code>alpha</code> must be a floating point between 0.0 and 1.0. * @throws IllegalArgumentException if the opacity is less than 0.0 or * greater than 1.0 * @return a new <code>BlendComposite</code> based on the selected blending * mode and opacity */ public static BlendComposite getInstance(BlendingMode mode, float alpha) { return new BlendComposite(mode, alpha); } /** * <p>Returns a <code>BlendComposite</code> object that uses the specified * blending mode and this object's alpha value. If the newly specified * blending mode is the same as this object's, this object is returned.</p> * * @param mode the blending mode defining the compositing rule * @return a <code>BlendComposite</code> object derived from this object, * that uses the specified blending mode */ public BlendComposite derive(BlendingMode mode) { return this.mode == mode ? this : new BlendComposite(mode, getAlpha()); } /** * <p>Returns a <code>BlendComposite</code> object that uses the specified * opacity, or alpha, and this object's blending mode. If the newly specified * opacity is the same as this object's, this object is returned.</p> * * @param alpha the constant alpha to be multiplied with the alpha of the * source. <code>alpha</code> must be a floating point between 0.0 and 1.0. * @throws IllegalArgumentException if the opacity is less than 0.0 or * greater than 1.0 * @return a <code>BlendComposite</code> object derived from this object, * that uses the specified blending mode */ public BlendComposite derive(float alpha) { return this.alpha == alpha ? this : new BlendComposite(getMode(), alpha); } /** * <p>Returns the opacity of this composite. If no opacity has been defined, * 1.0 is returned.</p> * * @return the alpha value, or opacity, of this object */ public float getAlpha() { return alpha; } /** * <p>Returns the blending mode of this composite.</p> * * @return the blending mode used by this object */ public BlendingMode getMode() { return mode; } /** * {@inheritDoc} */ @Override public int hashCode() { return Float.floatToIntBits(alpha) * 31 + mode.ordinal(); } /** * {@inheritDoc} */ @Override public boolean equals(Object obj) { if (!(obj instanceof BlendComposite)) { return false; } BlendComposite bc = (BlendComposite) obj; return mode == bc.mode && alpha == bc.alpha; } private static boolean checkComponentsOrder(ColorModel cm) { if (cm instanceof DirectColorModel && cm.getTransferType() == DataBuffer.TYPE_INT) { DirectColorModel directCM = (DirectColorModel) cm; return directCM.getRedMask() == 0x00FF0000 && directCM.getGreenMask() == 0x0000FF00 && directCM.getBlueMask() == 0x000000FF && (directCM.getNumComponents() != 4 || directCM.getAlphaMask() == 0xFF000000); } return false; } /** * {@inheritDoc} */ public CompositeContext createContext(ColorModel srcColorModel, ColorModel dstColorModel, RenderingHints hints) { if (!checkComponentsOrder(srcColorModel) || !checkComponentsOrder(dstColorModel)) { throw new RasterFormatException("Incompatible color models"); } return new BlendingContext(this); } private static final class BlendingContext implements CompositeContext { private final Blender blender; private final BlendComposite composite; private BlendingContext(BlendComposite composite) { this.composite = composite; this.blender = Blender.getBlenderFor(composite); } public void dispose() { } public void compose(Raster src, Raster dstIn, WritableRaster dstOut) { int width = Math.min(src.getWidth(), dstIn.getWidth()); int height = Math.min(src.getHeight(), dstIn.getHeight()); float alpha = composite.getAlpha(); int[] result = new int[4]; int[] srcPixel = new int[4]; int[] dstPixel = new int[4]; int[] srcPixels = new int[width]; int[] dstPixels = new int[width]; for (int y = 0; y < height; y++) { src.getDataElements(0, y, width, 1, srcPixels); dstIn.getDataElements(0, y, width, 1, dstPixels); for (int x = 0; x < width; x++) { // pixels are stored as INT_ARGB // our arrays are [R, G, B, A] int pixel = srcPixels[x]; srcPixel[0] = (pixel >> 16) & 0xFF; srcPixel[1] = (pixel >> 8) & 0xFF; srcPixel[2] = (pixel) & 0xFF; srcPixel[3] = (pixel >> 24) & 0xFF; pixel = dstPixels[x]; dstPixel[0] = (pixel >> 16) & 0xFF; dstPixel[1] = (pixel >> 8) & 0xFF; dstPixel[2] = (pixel) & 0xFF; dstPixel[3] = (pixel >> 24) & 0xFF; blender.blend(srcPixel, dstPixel, result); // mixes the result with the opacity dstPixels[x] = ((int) (dstPixel[3] + (result[3] - dstPixel[3]) * alpha) & 0xFF) << 24 | ((int) (dstPixel[0] + (result[0] - dstPixel[0]) * alpha) & 0xFF) << 16 | ((int) (dstPixel[1] + (result[1] - dstPixel[1]) * alpha) & 0xFF) << 8 | (int) (dstPixel[2] + (result[2] - dstPixel[2]) * alpha) & 0xFF; } dstOut.setDataElements(0, y, width, 1, dstPixels); } } } private static abstract class Blender { public abstract void blend(int[] src, int[] dst, int[] result); public static Blender getBlenderFor(BlendComposite composite) { switch (composite.getMode()) { case ADD: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.min(255, src[0] + dst[0]); result[1] = Math.min(255, src[1] + dst[1]); result[2] = Math.min(255, src[2] + dst[2]); result[3] = Math.min(255, src[3] + dst[3]); } }; case AVERAGE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = (src[0] + dst[0]) >> 1; result[1] = (src[1] + dst[1]) >> 1; result[2] = (src[2] + dst[2]) >> 1; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case BLUE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0]; result[1] = src[1]; result[2] = dst[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case COLOR: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(srcHSL[0], srcHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case COLOR_BURN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[0]) << 8) / src[0])); result[1] = src[1] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[1]) << 8) / src[1])); result[2] = src[2] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[2]) << 8) / src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case COLOR_DODGE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 255 ? 255 : Math.min((dst[0] << 8) / (255 - src[0]), 255); result[1] = src[1] == 255 ? 255 : Math.min((dst[1] << 8) / (255 - src[1]), 255); result[2] = src[2] == 255 ? 255 : Math.min((dst[2] << 8) / (255 - src[2]), 255); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case DARKEN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.min(src[0], dst[0]); result[1] = Math.min(src[1], dst[1]); result[2] = Math.min(src[2], dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case DIFFERENCE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.abs(dst[0] - src[0]); result[1] = Math.abs(dst[1] - src[1]); result[2] = Math.abs(dst[2] - src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case EXCLUSION: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] - (dst[0] * src[0] >> 7); result[1] = dst[1] + src[1] - (dst[1] * src[1] >> 7); result[2] = dst[2] + src[2] - (dst[2] * src[2] >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case FREEZE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 0 ? 0 : Math.max(0, 255 - (255 - dst[0]) * (255 - dst[0]) / src[0]); result[1] = src[1] == 0 ? 0 : Math.max(0, 255 - (255 - dst[1]) * (255 - dst[1]) / src[1]); result[2] = src[2] == 0 ? 0 : Math.max(0, 255 - (255 - dst[2]) * (255 - dst[2]) / src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case GLOW: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 255 ? 255 : Math.min(255, src[0] * src[0] / (255 - dst[0])); result[1] = dst[1] == 255 ? 255 : Math.min(255, src[1] * src[1] / (255 - dst[1])); result[2] = dst[2] == 255 ? 255 : Math.min(255, src[2] * src[2] / (255 - dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case GREEN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0]; result[1] = dst[1]; result[2] = src[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case HARD_LIGHT: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 128 ? dst[0] * src[0] >> 7 : 255 - ((255 - src[0]) * (255 - dst[0]) >> 7); result[1] = src[1] < 128 ? dst[1] * src[1] >> 7 : 255 - ((255 - src[1]) * (255 - dst[1]) >> 7); result[2] = src[2] < 128 ? dst[2] * src[2] >> 7 : 255 - ((255 - src[2]) * (255 - dst[2]) >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case HEAT: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 0 ? 0 : Math.max(0, 255 - (255 - src[0]) * (255 - src[0]) / dst[0]); result[1] = dst[1] == 0 ? 0 : Math.max(0, 255 - (255 - src[1]) * (255 - src[1]) / dst[1]); result[2] = dst[2] == 0 ? 0 : Math.max(0, 255 - (255 - src[2]) * (255 - src[2]) / dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case HUE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(srcHSL[0], dstHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case INVERSE_COLOR_BURN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 0 ? 0 : Math.max(0, 255 - (((255 - src[0]) << 8) / dst[0])); result[1] = dst[1] == 0 ? 0 : Math.max(0, 255 - (((255 - src[1]) << 8) / dst[1])); result[2] = dst[2] == 0 ? 0 : Math.max(0, 255 - (((255 - src[2]) << 8) / dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case INVERSE_COLOR_DODGE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 255 ? 255 : Math.min((src[0] << 8) / (255 - dst[0]), 255); result[1] = dst[1] == 255 ? 255 : Math.min((src[1] << 8) / (255 - dst[1]), 255); result[2] = dst[2] == 255 ? 255 : Math.min((src[2] << 8) / (255 - dst[2]), 255); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case LIGHTEN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(src[0], dst[0]); result[1] = Math.max(src[1], dst[1]); result[2] = Math.max(src[2], dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case LUMINOSITY: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(dstHSL[0], dstHSL[1], srcHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case MULTIPLY: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = (src[0] * dst[0]) >> 8; result[1] = (src[1] * dst[1]) >> 8; result[2] = (src[2] * dst[2]) >> 8; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case NEGATION: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = 255 - Math.abs(255 - dst[0] - src[0]); result[1] = 255 - Math.abs(255 - dst[1] - src[1]); result[2] = 255 - Math.abs(255 - dst[2] - src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case OVERLAY: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] < 128 ? dst[0] * src[0] >> 7 : 255 - ((255 - dst[0]) * (255 - src[0]) >> 7); result[1] = dst[1] < 128 ? dst[1] * src[1] >> 7 : 255 - ((255 - dst[1]) * (255 - src[1]) >> 7); result[2] = dst[2] < 128 ? dst[2] * src[2] >> 7 : 255 - ((255 - dst[2]) * (255 - src[2]) >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case RED: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0]; result[1] = dst[1]; result[2] = dst[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case REFLECT: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 255 ? 255 : Math.min(255, dst[0] * dst[0] / (255 - src[0])); result[1] = src[1] == 255 ? 255 : Math.min(255, dst[1] * dst[1] / (255 - src[1])); result[2] = src[2] == 255 ? 255 : Math.min(255, dst[2] * dst[2] / (255 - src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SATURATION: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(dstHSL[0], srcHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SCREEN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = 255 - ((255 - src[0]) * (255 - dst[0]) >> 8); result[1] = 255 - ((255 - src[1]) * (255 - dst[1]) >> 8); result[2] = 255 - ((255 - src[2]) * (255 - dst[2]) >> 8); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SOFT_BURN: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] < 256 ? (dst[0] == 255 ? 255 : Math.min(255, (src[0] << 7) / (255 - dst[0]))) : Math.max(0, 255 - (((255 - dst[0]) << 7) / src[0])); result[1] = dst[1] + src[1] < 256 ? (dst[1] == 255 ? 255 : Math.min(255, (src[1] << 7) / (255 - dst[1]))) : Math.max(0, 255 - (((255 - dst[1]) << 7) / src[1])); result[2] = dst[2] + src[2] < 256 ? (dst[2] == 255 ? 255 : Math.min(255, (src[2] << 7) / (255 - dst[2]))) : Math.max(0, 255 - (((255 - dst[2]) << 7) / src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SOFT_DODGE: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] < 256 ? (src[0] == 255 ? 255 : Math.min(255, (dst[0] << 7) / (255 - src[0]))) : Math.max(0, 255 - (((255 - src[0]) << 7) / dst[0])); result[1] = dst[1] + src[1] < 256 ? (src[1] == 255 ? 255 : Math.min(255, (dst[1] << 7) / (255 - src[1]))) : Math.max(0, 255 - (((255 - src[1]) << 7) / dst[1])); result[2] = dst[2] + src[2] < 256 ? (src[2] == 255 ? 255 : Math.min(255, (dst[2] << 7) / (255 - src[2]))) : Math.max(0, 255 - (((255 - src[2]) << 7) / dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SOFT_LIGHT: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { int mRed = src[0] * dst[0] / 255; int mGreen = src[1] * dst[1] / 255; int mBlue = src[2] * dst[2] / 255; result[0] = mRed + src[0] * (255 - ((255 - src[0]) * (255 - dst[0]) / 255) - mRed) / 255; result[1] = mGreen + src[1] * (255 - ((255 - src[1]) * (255 - dst[1]) / 255) - mGreen) / 255; result[2] = mBlue + src[2] * (255 - ((255 - src[2]) * (255 - dst[2]) / 255) - mBlue) / 255; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case STAMP: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(0, Math.min(255, dst[0] + 2 * src[0] - 256)); result[1] = Math.max(0, Math.min(255, dst[1] + 2 * src[1] - 256)); result[2] = Math.max(0, Math.min(255, dst[2] + 2 * src[2] - 256)); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; case SUBTRACT: return new Blender() { @Override public void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(0, src[0] + dst[0] - 256); result[1] = Math.max(0, src[1] + dst[1] - 256); result[2] = Math.max(0, src[2] + dst[2] - 256); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }; } throw new IllegalArgumentException("Blender not implemented for " + composite.getMode().name()); } } } /* * $Id: GraphicsUtilities.java,v 1.1 2006/12/15 13:53:13 gfx Exp $ * * Dual-licensed under LGPL (Sun and Romain Guy) and BSD (Romain Guy). * * Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, * Santa Clara, California 95054, U.S.A. All rights reserved. * * Copyright (c) 2006 Romain Guy <romain.guy@mac.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * <p><code>GraphicsUtilities</code> contains a set of tools to perform * common graphics operations easily. These operations are divided into * several themes, listed below.</p> * <h2>Compatible Images</h2> * <p>Compatible images can, and should, be used to increase drawing * performance. This class provides a number of methods to load compatible * images directly from files or to convert existing images to compatibles * images.</p> * <h2>Creating Thumbnails</h2> * <p>This class provides a number of methods to easily scale down images. * Some of these methods offer a trade-off between speed and result quality and * shouuld be used all the time. They also offer the advantage of producing * compatible images, thus automatically resulting into better runtime * performance.</p> * <p>All these methodes are both faster than * {@link java.awt.Image#getScaledInstance(int, int, int)} and produce * better-looking results than the various <code>drawImage()</code> methods * in {@link java.awt.Graphics}, which can be used for image scaling.</p> * <h2>Image Manipulation</h2> * <p>This class provides two methods to get and set pixels in a buffered image. * These methods try to avoid unmanaging the image in order to keep good * performance.</p> * * @author Romain Guy <romain.guy@mac.com> */ class GraphicsUtilities { private static final GraphicsConfiguration CONFIGURATION = GraphicsEnvironment.getLocalGraphicsEnvironment() .getDefaultScreenDevice().getDefaultConfiguration(); private GraphicsUtilities() { } /** * <p>Returns a new <code>BufferedImage</code> using the same color model * as the image passed as a parameter. The returned image is only compatible * with the image passed as a parameter. This does not mean the returned * image is compatible with the hardware.</p> * * @param image the reference image from which the color model of the new * image is obtained * @return a new <code>BufferedImage</code>, compatible with the color model * of <code>image</code> */ public static BufferedImage createColorModelCompatibleImage(BufferedImage image) { ColorModel cm = image.getColorModel(); return new BufferedImage(cm, cm.createCompatibleWritableRaster(image.getWidth(), image.getHeight()), cm.isAlphaPremultiplied(), null); } /** * <p>Returns a new compatible image with the same width, height and * transparency as the image specified as a parameter.</p> * * @see java.awt.Transparency * @see #createCompatibleImage(int, int) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createTranslucentCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param image the reference image from which the dimension and the * transparency of the new image are obtained * @return a new compatible <code>BufferedImage</code> with the same * dimension and transparency as <code>image</code> */ public static BufferedImage createCompatibleImage(BufferedImage image) { return createCompatibleImage(image, image.getWidth(), image.getHeight()); } /** * <p>Returns a new compatible image of the specified width and height, and * the same transparency setting as the image specified as a parameter.</p> * * @see java.awt.Transparency * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(int, int) * @see #createTranslucentCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @param image the reference image from which the transparency of the new * image is obtained * @return a new compatible <code>BufferedImage</code> with the same * transparency as <code>image</code> and the specified dimension */ public static BufferedImage createCompatibleImage(BufferedImage image, int width, int height) { return CONFIGURATION.createCompatibleImage(width, height, image.getTransparency()); } /** * <p>Returns a new opaque compatible image of the specified width and * height.</p> * * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createTranslucentCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @return a new opaque compatible <code>BufferedImage</code> of the * specified width and height */ public static BufferedImage createCompatibleImage(int width, int height) { return CONFIGURATION.createCompatibleImage(width, height); } /** * <p>Returns a new translucent compatible image of the specified width * and height.</p> * * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param width the width of the new image * @param height the height of the new image * @return a new translucent compatible <code>BufferedImage</code> of the * specified width and height */ public static BufferedImage createTranslucentCompatibleImage(int width, int height) { return CONFIGURATION.createCompatibleImage(width, height, Transparency.TRANSLUCENT); } /** * <p>Returns a new compatible image from a URL. The image is loaded from the * specified location and then turned, if necessary into a compatible * image.</p> * * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #createTranslucentCompatibleImage(int, int) * @see #toCompatibleImage(java.awt.image.BufferedImage) * @param resource the URL of the picture to load as a compatible image * @return a new translucent compatible <code>BufferedImage</code> of the * specified width and height * @throws java.io.IOException if the image cannot be read or loaded */ public static BufferedImage loadCompatibleImage(URL resource) throws IOException { BufferedImage image = ImageIO.read(resource); return toCompatibleImage(image); } /** * <p>Return a new compatible image that contains a copy of the specified * image. This method ensures an image is compatible with the hardware, * and therefore optimized for fast blitting operations.</p> * * @see #createCompatibleImage(java.awt.image.BufferedImage) * @see #createCompatibleImage(java.awt.image.BufferedImage, int, int) * @see #createCompatibleImage(int, int) * @see #createTranslucentCompatibleImage(int, int) * @see #loadCompatibleImage(java.net.URL) * @param image the image to copy into a new compatible image * @return a new compatible copy, with the * same width and height and transparency and content, of <code>image</code> */ public static BufferedImage toCompatibleImage(BufferedImage image) { if (image.getColorModel().equals(CONFIGURATION.getColorModel())) { return image; } BufferedImage compatibleImage = CONFIGURATION.createCompatibleImage(image.getWidth(), image.getHeight(), image.getTransparency()); Graphics g = compatibleImage.getGraphics(); g.drawImage(image, 0, 0, null); g.dispose(); return compatibleImage; } /** * <p>Returns a thumbnail of a source image. <code>newSize</code> defines * the length of the longest dimension of the thumbnail. The other * dimension is then computed according to the dimensions ratio of the * original picture.</p> * <p>This method favors speed over quality. When the new size is less than * half the longest dimension of the source image, * {@link #createThumbnail(BufferedImage, int)} or * {@link #createThumbnail(BufferedImage, int, int)} should be used instead * to ensure the quality of the result without sacrificing too much * performance.</p> * * @see #createThumbnailFast(java.awt.image.BufferedImage, int, int) * @see #createThumbnail(java.awt.image.BufferedImage, int) * @see #createThumbnail(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newSize the length of the largest dimension of the thumbnail * @return a new compatible <code>BufferedImage</code> containing a * thumbnail of <code>image</code> * @throws IllegalArgumentException if <code>newSize</code> is larger than * the largest dimension of <code>image</code> or <= 0 */ public static BufferedImage createThumbnailFast(BufferedImage image, int newSize) { float ratio; int width = image.getWidth(); int height = image.getHeight(); if (width > height) { if (newSize >= width) { throw new IllegalArgumentException("newSize must be lower than" + " the image width"); } else if (newSize <= 0) { throw new IllegalArgumentException("newSize must" + " be greater than 0"); } ratio = (float) width / (float) height; width = newSize; height = (int) (newSize / ratio); } else { if (newSize >= height) { throw new IllegalArgumentException("newSize must be lower than" + " the image height"); } else if (newSize <= 0) { throw new IllegalArgumentException("newSize must" + " be greater than 0"); } ratio = (float) height / (float) width; height = newSize; width = (int) (newSize / ratio); } BufferedImage temp = createCompatibleImage(image, width, height); Graphics2D g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(image, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); return temp; } /** * <p>Returns a thumbnail of a source image.</p> * <p>This method favors speed over quality. When the new size is less than * half the longest dimension of the source image, * {@link #createThumbnail(BufferedImage, int)} or * {@link #createThumbnail(BufferedImage, int, int)} should be used instead * to ensure the quality of the result without sacrificing too much * performance.</p> * * @see #createThumbnailFast(java.awt.image.BufferedImage, int) * @see #createThumbnail(java.awt.image.BufferedImage, int) * @see #createThumbnail(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newWidth the width of the thumbnail * @param newHeight the height of the thumbnail * @return a new compatible <code>BufferedImage</code> containing a * thumbnail of <code>image</code> * @throws IllegalArgumentException if <code>newWidth</code> is larger than * the width of <code>image</code> or if code>newHeight</code> is larger * than the height of <code>image</code> or if one of the dimensions * is <= 0 */ public static BufferedImage createThumbnailFast(BufferedImage image, int newWidth, int newHeight) { if (newWidth >= image.getWidth() || newHeight >= image.getHeight()) { throw new IllegalArgumentException( "newWidth and newHeight cannot" + " be greater than the image" + " dimensions"); } else if (newWidth <= 0 || newHeight <= 0) { throw new IllegalArgumentException("newWidth and newHeight must" + " be greater than 0"); } BufferedImage temp = createCompatibleImage(image, newWidth, newHeight); Graphics2D g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(image, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); return temp; } /** * <p>Returns a thumbnail of a source image. <code>newSize</code> defines * the length of the longest dimension of the thumbnail. The other * dimension is then computed according to the dimensions ratio of the * original picture.</p> * <p>This method offers a good trade-off between speed and quality. * The result looks better than * {@link #createThumbnailFast(java.awt.image.BufferedImage, int)} when * the new size is less than half the longest dimension of the source * image, yet the rendering speed is almost similar.</p> * * @see #createThumbnailFast(java.awt.image.BufferedImage, int, int) * @see #createThumbnailFast(java.awt.image.BufferedImage, int) * @see #createThumbnail(java.awt.image.BufferedImage, int, int) * @param image the source image * @param newSize the length of the largest dimension of the thumbnail * @return a new compatible <code>BufferedImage</code> containing a * thumbnail of <code>image</code> * @throws IllegalArgumentException if <code>newSize</code> is larger than * the largest dimension of <code>image</code> or <= 0 */ public static BufferedImage createThumbnail(BufferedImage image, int newSize) { int width = image.getWidth(); int height = image.getHeight(); boolean isWidthGreater = width > height; if (isWidthGreater) { if (newSize >= width) { throw new IllegalArgumentException("newSize must be lower than" + " the image width"); } } else if (newSize >= height) { throw new IllegalArgumentException("newSize must be lower than" + " the image height"); } if (newSize <= 0) { throw new IllegalArgumentException("newSize must" + " be greater than 0"); } float ratioWH = (float) width / (float) height; float ratioHW = (float) height / (float) width; BufferedImage thumb = image; do { if (isWidthGreater) { width /= 2; if (width < newSize) { width = newSize; } height = (int) (width / ratioWH); } else { height /= 2; if (height < newSize) { height = newSize; } width = (int) (height / ratioHW); } BufferedImage temp = createCompatibleImage(image, width, height); Graphics2D g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(thumb, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); thumb = temp; } while (newSize != (isWidthGreater ? width : height)); return thumb; } /** * <p>Returns a thumbnail of a source image.</p> * <p>This method offers a good trade-off between speed and quality. * The result looks better than * {@link #createThumbnailFast(java.awt.image.BufferedImage, int)} when * the new size is less than half the longest dimension of the source * image, yet the rendering speed is almost similar.</p> * * @see #createThumbnailFast(java.awt.image.BufferedImage, int) * @see #createThumbnailFast(java.awt.image.BufferedImage, int, int) * @see #createThumbnail(java.awt.image.BufferedImage, int) * @param image the source image * @param newWidth the width of the thumbnail * @param newHeight the height of the thumbnail * @return a new compatible <code>BufferedImage</code> containing a * thumbnail of <code>image</code> * @throws IllegalArgumentException if <code>newWidth</code> is larger than * the width of <code>image</code> or if code>newHeight</code> is larger * than the height of <code>image or if one the dimensions is not > 0</code> */ public static BufferedImage createThumbnail(BufferedImage image, int newWidth, int newHeight) { int width = image.getWidth(); int height = image.getHeight(); if (newWidth >= width || newHeight >= height) { throw new IllegalArgumentException( "newWidth and newHeight cannot" + " be greater than the image" + " dimensions"); } else if (newWidth <= 0 || newHeight <= 0) { throw new IllegalArgumentException("newWidth and newHeight must" + " be greater than 0"); } BufferedImage thumb = image; do { if (width > newWidth) { width /= 2; if (width < newWidth) { width = newWidth; } } if (height > newHeight) { height /= 2; if (height < newHeight) { height = newHeight; } } BufferedImage temp = createCompatibleImage(image, width, height); Graphics2D g2 = temp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); g2.drawImage(thumb, 0, 0, temp.getWidth(), temp.getHeight(), null); g2.dispose(); thumb = temp; } while (width != newWidth || height != newHeight); return thumb; } /** * <p>Returns an array of pixels, stored as integers, from a * <code>BufferedImage</code>. The pixels are grabbed from a rectangular * area defined by a location and two dimensions. Calling this method on * an image of type different from <code>BufferedImage.TYPE_INT_ARGB</code> * and <code>BufferedImage.TYPE_INT_RGB</code> will unmanage the image.</p> * * @param img the source image * @param x the x location at which to start grabbing pixels * @param y the y location at which to start grabbing pixels * @param w the width of the rectangle of pixels to grab * @param h the height of the rectangle of pixels to grab * @param pixels a pre-allocated array of pixels of size w*h; can be null * @return <code>pixels</code> if non-null, a new array of integers * otherwise * @throws IllegalArgumentException is <code>pixels</code> is non-null and * of length < w*h */ public static int[] getPixels(BufferedImage img, int x, int y, int w, int h, int[] pixels) { if (w == 0 || h == 0) { return new int[0]; } if (pixels == null) { pixels = new int[w * h]; } else if (pixels.length < w * h) { throw new IllegalArgumentException("pixels array must have a length" + " >= w*h"); } int imageType = img.getType(); if (imageType == BufferedImage.TYPE_INT_ARGB || imageType == BufferedImage.TYPE_INT_RGB) { Raster raster = img.getRaster(); return (int[]) raster.getDataElements(x, y, w, h, pixels); } // Unmanages the image return img.getRGB(x, y, w, h, pixels, 0, w); } /** * <p>Writes a rectangular area of pixels in the destination * <code>BufferedImage</code>. Calling this method on * an image of type different from <code>BufferedImage.TYPE_INT_ARGB</code> * and <code>BufferedImage.TYPE_INT_RGB</code> will unmanage the image.</p> * * @param img the destination image * @param x the x location at which to start storing pixels * @param y the y location at which to start storing pixels * @param w the width of the rectangle of pixels to store * @param h the height of the rectangle of pixels to store * @param pixels an array of pixels, stored as integers * @throws IllegalArgumentException is <code>pixels</code> is non-null and * of length < w*h */ public static void setPixels(BufferedImage img, int x, int y, int w, int h, int[] pixels) { if (pixels == null || w == 0 || h == 0) { return; } else if (pixels.length < w * h) { throw new IllegalArgumentException("pixels array must have a length" + " >= w*h"); } int imageType = img.getType(); if (imageType == BufferedImage.TYPE_INT_ARGB || imageType == BufferedImage.TYPE_INT_RGB) { WritableRaster raster = img.getRaster(); raster.setDataElements(x, y, w, h, pixels); } else { // Unmanages the image img.setRGB(x, y, w, h, pixels, 0, w); } } } /* * $Id: ColorUtilities.java,v 1.1 2006/12/15 13:53:13 gfx Exp $ * * Dual-licensed under LGPL (Sun and Romain Guy) and BSD (Romain Guy). * * Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, * Santa Clara, California 95054, U.S.A. All rights reserved. * * Copyright (c) 2006 Romain Guy <romain.guy@mac.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * <p><code>ColorUtilities</code> contains a set of tools to perform * common color operations easily.</p> * * @author Romain Guy <romain.guy@mac.com> */ class ColorUtilities { private ColorUtilities() { } /** * <p>Returns the HSL (Hue/Saturation/Luminance) equivalent of a given * RGB color. All three HSL components are between 0.0 and 1.0.</p> * * @param color the RGB color to convert * @return a new array of 3 floats corresponding to the HSL components */ public static float[] RGBtoHSL(Color color) { return RGBtoHSL(color.getRed(), color.getGreen(), color.getBlue(), null); } /** * <p>Returns the HSL (Hue/Saturation/Luminance) equivalent of a given * RGB color. All three HSL components are between 0.0 and 1.0.</p> * * @param color the RGB color to convert * @param hsl a pre-allocated array of floats; can be null * @return <code>hsl</code> if non-null, a new array of 3 floats otherwise * @throws IllegalArgumentException if <code>hsl</code> has a length lower * than 3 */ public static float[] RGBtoHSL(Color color, float[] hsl) { return RGBtoHSL(color.getRed(), color.getGreen(), color.getBlue(), hsl); } /** * <p>Returns the HSL (Hue/Saturation/Luminance) equivalent of a given * RGB color. All three HSL components are between 0.0 and 1.0.</p> * * @param r the red component, between 0 and 255 * @param g the green component, between 0 and 255 * @param b the blue component, between 0 and 255 * @return a new array of 3 floats corresponding to the HSL components */ public static float[] RGBtoHSL(int r, int g, int b) { return RGBtoHSL(r, g, b, null); } /** * <p>Returns the HSL (Hue/Saturation/Luminance) equivalent of a given * RGB color. All three HSL components are floats between 0.0 and 1.0.</p> * * @param r the red component, between 0 and 255 * @param g the green component, between 0 and 255 * @param b the blue component, between 0 and 255 * @param hsl a pre-allocated array of floats; can be null * @return <code>hsl</code> if non-null, a new array of 3 floats otherwise * @throws IllegalArgumentException if <code>hsl</code> has a length lower * than 3 */ public static float[] RGBtoHSL(int r, int g, int b, float[] hsl) { if (hsl == null) { hsl = new float[3]; } else if (hsl.length < 3) { throw new IllegalArgumentException("hsl array must have a length of" + " at least 3"); } if (r < 0) r = 0; else if (r > 255) r = 255; if (g < 0) g = 0; else if (g > 255) g = 255; if (b < 0) b = 0; else if (b > 255) b = 255; float var_R = (r / 255f); float var_G = (g / 255f); float var_B = (b / 255f); float var_Min; float var_Max; float del_Max; if (var_R > var_G) { var_Min = var_G; var_Max = var_R; } else { var_Min = var_R; var_Max = var_G; } if (var_B > var_Max) { var_Max = var_B; } if (var_B < var_Min) { var_Min = var_B; } del_Max = var_Max - var_Min; float H, S, L; L = (var_Max + var_Min) / 2f; if (del_Max - 0.01f <= 0.0f) { H = 0; S = 0; } else { if (L < 0.5f) { S = del_Max / (var_Max + var_Min); } else { S = del_Max / (2 - var_Max - var_Min); } float del_R = (((var_Max - var_R) / 6f) + (del_Max / 2f)) / del_Max; float del_G = (((var_Max - var_G) / 6f) + (del_Max / 2f)) / del_Max; float del_B = (((var_Max - var_B) / 6f) + (del_Max / 2f)) / del_Max; if (var_R == var_Max) { H = del_B - del_G; } else if (var_G == var_Max) { H = (1 / 3f) + del_R - del_B; } else { H = (2 / 3f) + del_G - del_R; } if (H < 0) { H += 1; } if (H > 1) { H -= 1; } } hsl[0] = H; hsl[1] = S; hsl[2] = L; return hsl; } /** * <p>Returns the RGB equivalent of a given HSL (Hue/Saturation/Luminance) * color.</p> * * @param h the hue component, between 0.0 and 1.0 * @param s the saturation component, between 0.0 and 1.0 * @param l the luminance component, between 0.0 and 1.0 * @return a new <code>Color</code> object equivalent to the HSL components */ public static Color HSLtoRGB(float h, float s, float l) { int[] rgb = HSLtoRGB(h, s, l, null); return new Color(rgb[0], rgb[1], rgb[2]); } /** * <p>Returns the RGB equivalent of a given HSL (Hue/Saturation/Luminance) * color. All three RGB components are integers between 0 and 255.</p> * * @param h the hue component, between 0.0 and 1.0 * @param s the saturation component, between 0.0 and 1.0 * @param l the luminance component, between 0.0 and 1.0 * @param rgb a pre-allocated array of ints; can be null * @return <code>rgb</code> if non-null, a new array of 3 ints otherwise * @throws IllegalArgumentException if <code>rgb</code> has a length lower * than 3 */ public static int[] HSLtoRGB(float h, float s, float l, int[] rgb) { if (rgb == null) { rgb = new int[3]; } else if (rgb.length < 3) { throw new IllegalArgumentException("rgb array must have a length of" + " at least 3"); } if (h < 0) h = 0.0f; else if (h > 1.0f) h = 1.0f; if (s < 0) s = 0.0f; else if (s > 1.0f) s = 1.0f; if (l < 0) l = 0.0f; else if (l > 1.0f) l = 1.0f; int R, G, B; if (s - 0.01f <= 0.0f) { R = (int) (l * 255.0f); G = (int) (l * 255.0f); B = (int) (l * 255.0f); } else { float var_1, var_2; if (l < 0.5f) { var_2 = l * (1 + s); } else { var_2 = (l + s) - (s * l); } var_1 = 2 * l - var_2; R = (int) (255.0f * hue2RGB(var_1, var_2, h + (1.0f / 3.0f))); G = (int) (255.0f * hue2RGB(var_1, var_2, h)); B = (int) (255.0f * hue2RGB(var_1, var_2, h - (1.0f / 3.0f))); } rgb[0] = R; rgb[1] = G; rgb[2] = B; return rgb; } private static float hue2RGB(float v1, float v2, float vH) { if (vH < 0.0f) { vH += 1.0f; } if (vH > 1.0f) { vH -= 1.0f; } if ((6.0f * vH) < 1.0f) { return (v1 + (v2 - v1) * 6.0f * vH); } if ((2.0f * vH) < 1.0f) { return (v2); } if ((3.0f * vH) < 2.0f) { return (v1 + (v2 - v1) * ((2.0f / 3.0f) - vH) * 6.0f); } return (v1); } }