java.awt.image.DirectColorModel.java Source code

Java tutorial

Introduction

Here is the source code for java.awt.image.DirectColorModel.java

Source

/*
 * Copyright (c) 1995, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.image;

import java.awt.color.ColorSpace;
import java.awt.Transparency;

/**
 * The {@code DirectColorModel} class is a {@code ColorModel}
 * class that works with pixel values that represent RGB
 * color and alpha information as separate samples and that pack all
 * samples for a single pixel into a single int, short, or byte quantity.
 * This class can be used only with ColorSpaces of type ColorSpace.TYPE_RGB.
 * In addition, for each component of the ColorSpace, the minimum
 * normalized component value obtained via the {@code getMinValue()}
 * method of ColorSpace must be 0.0, and the maximum value obtained via
 * the {@code getMaxValue()} method must be 1.0 (these min/max
 * values are typical for RGB spaces).
 * There must be three color samples in the pixel values and there can
 * be a single alpha sample.  For those methods that use a primitive array
 * pixel representation of type {@code transferType}, the array
 * length is always one.  The transfer
 * types supported are DataBuffer.TYPE_BYTE,
 * DataBuffer.TYPE_USHORT, and DataBuffer.TYPE_INT.
 * Color and alpha samples are stored in the single
 * element of the array in bits indicated by bit masks.  Each bit mask
 * must be contiguous and masks must not overlap.  The same masks apply to
 * the single int pixel representation used by other methods.  The
 * correspondence of masks and color/alpha samples is as follows:
 * <ul>
 * <li> Masks are identified by indices running from 0 through 2
 * if no alpha is present, or 3 if an alpha is present.
 * <li> The first three indices refer to color samples;
 * index 0 corresponds to red, index 1 to green, and index 2 to blue.
 * <li> Index 3 corresponds to the alpha sample, if present.
 * </ul>
 * <p>
 * The translation from pixel values to color/alpha components for
 * display or processing purposes is a one-to-one correspondence of
 * samples to components.  A {@code DirectColorModel} is
 * typically used with image data which uses masks to define packed
 * samples.  For example, a {@code DirectColorModel} can be used in
 * conjunction with a {@code SinglePixelPackedSampleModel} to
 * construct a {@link BufferedImage}.  Normally the masks used by the
 * {@link SampleModel} and the {@code ColorModel} would be the
 * same.  However, if they are different, the color interpretation
 * of pixel data will be done according to the masks of the
 * {@code ColorModel}.
 * <p>
 * A single int pixel representation is valid for all objects of this
 * class, since it is always possible to represent pixel values used with
 * this class in a single int.  Therefore, methods which use this
 * representation will not throw an {@code IllegalArgumentException}
 * due to an invalid pixel value.
 * <p>
 * This color model is similar to an X11 TrueColor visual.
 * The default RGB ColorModel specified by the
 * {@link ColorModel#getRGBdefault() getRGBdefault} method is a
 * {@code DirectColorModel} with the following parameters:
 * <pre>
 * Number of bits:        32
 * Red mask:              0x00ff0000
 * Green mask:            0x0000ff00
 * Blue mask:             0x000000ff
 * Alpha mask:            0xff000000
 * Color space:           sRGB
 * isAlphaPremultiplied:  False
 * Transparency:          Transparency.TRANSLUCENT
 * transferType:          DataBuffer.TYPE_INT
 * </pre>
 * <p>
 * Many of the methods in this class are final. This is because the
 * underlying native graphics code makes assumptions about the layout
 * and operation of this class and those assumptions are reflected in
 * the implementations of the methods here that are marked final.  You
 * can subclass this class for other reasons, but you cannot override
 * or modify the behavior of those methods.
 *
 * @see ColorModel
 * @see ColorSpace
 * @see SinglePixelPackedSampleModel
 * @see BufferedImage
 * @see ColorModel#getRGBdefault
 *
 */
public class DirectColorModel extends PackedColorModel {
    private int red_mask;
    private int green_mask;
    private int blue_mask;
    private int alpha_mask;
    private int red_offset;
    private int green_offset;
    private int blue_offset;
    private int alpha_offset;
    private int red_scale;
    private int green_scale;
    private int blue_scale;
    private int alpha_scale;
    private boolean is_LinearRGB;
    private int lRGBprecision;
    private byte[] tosRGB8LUT;
    private byte[] fromsRGB8LUT8;
    private short[] fromsRGB8LUT16;

    /**
     * Constructs a {@code DirectColorModel} from the specified masks
     * that indicate which bits in an {@code int} pixel representation
     * contain the red, green and blue color samples.  As pixel values do not
     * contain alpha information, all pixels are treated as opaque, which
     * means that alpha&nbsp;=&nbsp;1.0.  All of the bits
     * in each mask must be contiguous and fit in the specified number
     * of least significant bits of an {@code int} pixel representation.
     *  The {@code ColorSpace} is the default sRGB space. The
     * transparency value is Transparency.OPAQUE.  The transfer type
     * is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT,
     * or DataBuffer.TYPE_INT that can hold a single pixel.
     * @param bits the number of bits in the pixel values; for example,
     *         the sum of the number of bits in the masks.
     * @param rmask specifies a mask indicating which bits in an
     *         integer pixel contain the red component
     * @param gmask specifies a mask indicating which bits in an
     *         integer pixel contain the green component
     * @param bmask specifies a mask indicating which bits in an
     *         integer pixel contain the blue component
     *
     */
    public DirectColorModel(int bits, int rmask, int gmask, int bmask) {
        this(bits, rmask, gmask, bmask, 0);
    }

    /**
     * Constructs a {@code DirectColorModel} from the specified masks
     * that indicate which bits in an {@code int} pixel representation
     * contain the red, green and blue color samples and the alpha sample,
     * if present.  If {@code amask} is 0, pixel values do not contain
     * alpha information and all pixels are treated as opaque, which means
     * that alpha&nbsp;=&nbsp;1.0.  All of the bits in each mask must
     * be contiguous and fit in the specified number of least significant bits
     * of an {@code int} pixel representation.  Alpha, if present, is not
     * premultiplied.  The {@code ColorSpace} is the default sRGB space.
     * The transparency value is Transparency.OPAQUE if no alpha is
     * present, or Transparency.TRANSLUCENT otherwise.  The transfer type
     * is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT,
     * or DataBuffer.TYPE_INT that can hold a single pixel.
     * @param bits the number of bits in the pixel values; for example,
     *         the sum of the number of bits in the masks.
     * @param rmask specifies a mask indicating which bits in an
     *         integer pixel contain the red component
     * @param gmask specifies a mask indicating which bits in an
     *         integer pixel contain the green component
     * @param bmask specifies a mask indicating which bits in an
     *         integer pixel contain the blue component
     * @param amask specifies a mask indicating which bits in an
     *         integer pixel contain the alpha component
     */
    public DirectColorModel(int bits, int rmask, int gmask, int bmask, int amask) {
        super(ColorSpace.getInstance(ColorSpace.CS_sRGB), bits, rmask, gmask, bmask, amask, false,
                amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT,
                ColorModel.getDefaultTransferType(bits));
        setFields();
    }

    /**
     * Constructs a {@code DirectColorModel} from the specified
     * parameters.  Color components are in the specified
     * {@code ColorSpace}, which must be of type ColorSpace.TYPE_RGB
     * and have minimum normalized component values which are all 0.0
     * and maximum values which are all 1.0.
     * The masks specify which bits in an {@code int} pixel
     * representation contain the red, green and blue color samples and
     * the alpha sample, if present.  If {@code amask} is 0, pixel
     * values do not contain alpha information and all pixels are treated
     * as opaque, which means that alpha&nbsp;=&nbsp;1.0.  All of the
     * bits in each mask must be contiguous and fit in the specified number
     * of least significant bits of an {@code int} pixel
     * representation.  If there is alpha, the {@code boolean}
     * {@code isAlphaPremultiplied} specifies how to interpret
     * color and alpha samples in pixel values.  If the {@code boolean}
     * is {@code true}, color samples are assumed to have been
     * multiplied by the alpha sample.  The transparency value is
     * Transparency.OPAQUE, if no alpha is present, or
     * Transparency.TRANSLUCENT otherwise.  The transfer type
     * is the type of primitive array used to represent pixel values and
     * must be one of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or
     * DataBuffer.TYPE_INT.
     * @param space the specified {@code ColorSpace}
     * @param bits the number of bits in the pixel values; for example,
     *         the sum of the number of bits in the masks.
     * @param rmask specifies a mask indicating which bits in an
     *         integer pixel contain the red component
     * @param gmask specifies a mask indicating which bits in an
     *         integer pixel contain the green component
     * @param bmask specifies a mask indicating which bits in an
     *         integer pixel contain the blue component
     * @param amask specifies a mask indicating which bits in an
     *         integer pixel contain the alpha component
     * @param isAlphaPremultiplied {@code true} if color samples are
     *        premultiplied by the alpha sample; {@code false} otherwise
     * @param transferType the type of array used to represent pixel values
     * @throws IllegalArgumentException if {@code space} is not a
     *         TYPE_RGB space or if the min/max normalized component
     *         values are not 0.0/1.0.
     */
    public DirectColorModel(ColorSpace space, int bits, int rmask, int gmask, int bmask, int amask,
            boolean isAlphaPremultiplied, int transferType) {
        super(space, bits, rmask, gmask, bmask, amask, isAlphaPremultiplied,
                amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT, transferType);
        if (ColorModel.isLinearRGBspace(colorSpace)) {
            is_LinearRGB = true;
            if (maxBits <= 8) {
                lRGBprecision = 8;
                tosRGB8LUT = ColorModel.getLinearRGB8TosRGB8LUT();
                fromsRGB8LUT8 = ColorModel.getsRGB8ToLinearRGB8LUT();
            } else {
                lRGBprecision = 16;
                tosRGB8LUT = ColorModel.getLinearRGB16TosRGB8LUT();
                fromsRGB8LUT16 = ColorModel.getsRGB8ToLinearRGB16LUT();
            }
        } else if (!is_sRGB) {
            for (int i = 0; i < 3; i++) {
                // super constructor checks that space is TYPE_RGB
                // check here that min/max are all 0.0/1.0
                if ((space.getMinValue(i) != 0.0f) || (space.getMaxValue(i) != 1.0f)) {
                    throw new IllegalArgumentException("Illegal min/max RGB component value");
                }
            }
        }
        setFields();
    }

    /**
     * Returns the mask indicating which bits in an {@code int} pixel
     * representation contain the red color component.
     * @return the mask, which indicates which bits of the {@code int}
     *         pixel representation contain the red color sample.
     */
    public final int getRedMask() {
        return maskArray[0];
    }

    /**
     * Returns the mask indicating which bits in an {@code int} pixel
     * representation contain the green color component.
     * @return the mask, which indicates which bits of the {@code int}
     *         pixel representation contain the green color sample.
     */
    public final int getGreenMask() {
        return maskArray[1];
    }

    /**
     * Returns the mask indicating which bits in an {@code int} pixel
     * representation contain the blue color component.
     * @return the mask, which indicates which bits of the {@code int}
     *         pixel representation contain the blue color sample.
     */
    public final int getBlueMask() {
        return maskArray[2];
    }

    /**
     * Returns the mask indicating which bits in an {@code int} pixel
     * representation contain the alpha component.
     * @return the mask, which indicates which bits of the {@code int}
     *         pixel representation contain the alpha sample.
     */
    public final int getAlphaMask() {
        if (supportsAlpha) {
            return maskArray[3];
        } else {
            return 0;
        }
    }

    /*
     * Given an int pixel in this ColorModel's ColorSpace, converts
     * it to the default sRGB ColorSpace and returns the R, G, and B
     * components as float values between 0.0 and 1.0.
     */
    private float[] getDefaultRGBComponents(int pixel) {
        int[] components = getComponents(pixel, null, 0);
        float[] norm = getNormalizedComponents(components, 0, null, 0);
        // Note that getNormalizedComponents returns non-premultiplied values
        return colorSpace.toRGB(norm);
    }

    private int getsRGBComponentFromsRGB(int pixel, int idx) {
        int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]);
        if (isAlphaPremultiplied) {
            int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
            c = (a == 0) ? 0 : (int) (((c * scaleFactors[idx]) * 255.0f / (a * scaleFactors[3])) + 0.5f);
        } else if (scaleFactors[idx] != 1.0f) {
            c = (int) ((c * scaleFactors[idx]) + 0.5f);
        }
        return c;
    }

    private int getsRGBComponentFromLinearRGB(int pixel, int idx) {
        int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]);
        if (isAlphaPremultiplied) {
            float factor = (float) ((1 << lRGBprecision) - 1);
            int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
            c = (a == 0) ? 0 : (int) (((c * scaleFactors[idx]) * factor / (a * scaleFactors[3])) + 0.5f);
        } else if (nBits[idx] != lRGBprecision) {
            if (lRGBprecision == 16) {
                c = (int) ((c * scaleFactors[idx] * 257.0f) + 0.5f);
            } else {
                c = (int) ((c * scaleFactors[idx]) + 0.5f);
            }
        }
        // now range of c is 0-255 or 0-65535, depending on lRGBprecision
        return tosRGB8LUT[c] & 0xff;
    }

    /**
     * Returns the red color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * as an {@code int}.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the red value
     * is 0.
     * @param pixel the specified pixel
     * @return the red color component for the specified pixel, from
     *         0 to 255 in the sRGB {@code ColorSpace}.
     */
    public final int getRed(int pixel) {
        if (is_sRGB) {
            return getsRGBComponentFromsRGB(pixel, 0);
        } else if (is_LinearRGB) {
            return getsRGBComponentFromLinearRGB(pixel, 0);
        }
        float[] rgb = getDefaultRGBComponents(pixel);
        return (int) (rgb[0] * 255.0f + 0.5f);
    }

    /**
     * Returns the green color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * as an {@code int}.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the green value
     * is 0.
     * @param pixel the specified pixel
     * @return the green color component for the specified pixel, from
     *         0 to 255 in the sRGB {@code ColorSpace}.
     */
    public final int getGreen(int pixel) {
        if (is_sRGB) {
            return getsRGBComponentFromsRGB(pixel, 1);
        } else if (is_LinearRGB) {
            return getsRGBComponentFromLinearRGB(pixel, 1);
        }
        float[] rgb = getDefaultRGBComponents(pixel);
        return (int) (rgb[1] * 255.0f + 0.5f);
    }

    /**
     * Returns the blue color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * as an {@code int}.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the blue value
     * is 0.
     * @param pixel the specified pixel
     * @return the blue color component for the specified pixel, from
     *         0 to 255 in the sRGB {@code ColorSpace}.
     */
    public final int getBlue(int pixel) {
        if (is_sRGB) {
            return getsRGBComponentFromsRGB(pixel, 2);
        } else if (is_LinearRGB) {
            return getsRGBComponentFromLinearRGB(pixel, 2);
        }
        float[] rgb = getDefaultRGBComponents(pixel);
        return (int) (rgb[2] * 255.0f + 0.5f);
    }

    /**
     * Returns the alpha component for the specified pixel, scaled
     * from 0 to 255.  The pixel value is specified as an {@code int}.
     * @param pixel the specified pixel
     * @return the value of the alpha component of {@code pixel}
     *         from 0 to 255.
     */
    public final int getAlpha(int pixel) {
        if (!supportsAlpha)
            return 255;
        int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
        if (scaleFactors[3] != 1.0f) {
            a = (int) (a * scaleFactors[3] + 0.5f);
        }
        return a;
    }

    /**
     * Returns the color/alpha components of the pixel in the default
     * RGB color model format.  A color conversion is done if necessary.
     * The pixel value is specified as an {@code int}.
     * The returned value is in a non pre-multiplied format.  Thus, if
     * the alpha is premultiplied, this method divides it out of the
     * color components.  If the alpha value is 0, for example, the color
     * values are each 0.
     * @param pixel the specified pixel
     * @return the RGB value of the color/alpha components of the specified
     *         pixel.
     * @see ColorModel#getRGBdefault
     */
    public final int getRGB(int pixel) {
        if (is_sRGB || is_LinearRGB) {
            return (getAlpha(pixel) << 24) | (getRed(pixel) << 16) | (getGreen(pixel) << 8) | (getBlue(pixel) << 0);
        }
        float[] rgb = getDefaultRGBComponents(pixel);
        return (getAlpha(pixel) << 24) | (((int) (rgb[0] * 255.0f + 0.5f)) << 16)
                | (((int) (rgb[1] * 255.0f + 0.5f)) << 8) | (((int) (rgb[2] * 255.0f + 0.5f)) << 0);
    }

    /**
     * Returns the red color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * by an array of data elements of type {@code transferType} passed
     * in as an object reference.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the red value
     * is 0.
     * If {@code inData} is not a primitive array of type
     * {@code transferType}, a {@code ClassCastException} is
     * thrown.  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code inData} is not large enough to hold a
     * pixel value for this {@code ColorModel}.  Since
     * {@code DirectColorModel} can be subclassed, subclasses inherit
     * the implementation of this method and if they don't override it
     * then they throw an exception if they use an unsupported
     * {@code transferType}.
     * An {@code UnsupportedOperationException} is thrown if this
     * {@code transferType} is not supported by this
     * {@code ColorModel}.
     * @param inData the array containing the pixel value
     * @return the value of the red component of the specified pixel.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     *         large enough to hold a pixel value for this color model
     * @throws ClassCastException if {@code inData} is not a
     *         primitive array of type {@code transferType}
     * @throws UnsupportedOperationException if this {@code transferType}
     *         is not supported by this color model
     */
    public int getRed(Object inData) {
        int pixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            pixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) inData;
            pixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            pixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getRed(pixel);
    }

    /**
     * Returns the green color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * by an array of data elements of type {@code transferType} passed
     * in as an object reference.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the green value
     * is 0.  If {@code inData} is not a primitive array of type
     * {@code transferType}, a {@code ClassCastException} is thrown.
     *  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code inData} is not large enough to hold a pixel
     * value for this {@code ColorModel}.  Since
     * {@code DirectColorModel} can be subclassed, subclasses inherit
     * the implementation of this method and if they don't override it
     * then they throw an exception if they use an unsupported
     * {@code transferType}.
     * An {@code UnsupportedOperationException} is
     * thrown if this {@code transferType} is not supported by this
     * {@code ColorModel}.
     * @param inData the array containing the pixel value
     * @return the value of the green component of the specified pixel.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     *         large enough to hold a pixel value for this color model
     * @throws ClassCastException if {@code inData} is not a
     *         primitive array of type {@code transferType}
     * @throws UnsupportedOperationException if this {@code transferType}
     *         is not supported by this color model
     */
    public int getGreen(Object inData) {
        int pixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            pixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) inData;
            pixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            pixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getGreen(pixel);
    }

    /**
     * Returns the blue color component for the specified pixel, scaled
     * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB.  A
     * color conversion is done if necessary.  The pixel value is specified
     * by an array of data elements of type {@code transferType} passed
     * in as an object reference.
     * The returned value is a non pre-multiplied value.  Thus, if the
     * alpha is premultiplied, this method divides it out before returning
     * the value.  If the alpha value is 0, for example, the blue value
     * is 0.  If {@code inData} is not a primitive array of type
     * {@code transferType}, a {@code ClassCastException} is thrown.
     *  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code inData} is not large enough to hold a pixel
     * value for this {@code ColorModel}.  Since
     * {@code DirectColorModel} can be subclassed, subclasses inherit
     * the implementation of this method and if they don't override it
     * then they throw an exception if they use an unsupported
     * {@code transferType}.
     * An {@code UnsupportedOperationException} is
     * thrown if this {@code transferType} is not supported by this
     * {@code ColorModel}.
     * @param inData the array containing the pixel value
     * @return the value of the blue component of the specified pixel.
     * @throws ArrayIndexOutOfBoundsException if {@code inData} is not
     *         large enough to hold a pixel value for this color model
     * @throws ClassCastException if {@code inData} is not a
     *         primitive array of type {@code transferType}
     * @throws UnsupportedOperationException if this {@code transferType}
     *         is not supported by this color model
     */
    public int getBlue(Object inData) {
        int pixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            pixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) inData;
            pixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            pixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getBlue(pixel);
    }

    /**
     * Returns the alpha component for the specified pixel, scaled
     * from 0 to 255.  The pixel value is specified by an array of data
     * elements of type {@code transferType} passed in as an object
     * reference.
     * If {@code inData} is not a primitive array of type
     * {@code transferType}, a {@code ClassCastException} is
     * thrown.  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code inData} is not large enough to hold a pixel
     * value for this {@code ColorModel}.  Since
     * {@code DirectColorModel} can be subclassed, subclasses inherit
     * the implementation of this method and if they don't override it
     * then they throw an exception if they use an unsupported
     * {@code transferType}.
     * If this {@code transferType} is not supported, an
     * {@code UnsupportedOperationException} is thrown.
     * @param inData the specified pixel
     * @return the alpha component of the specified pixel, scaled from
     *         0 to 255.
     * @exception ClassCastException if {@code inData}
     *  is not a primitive array of type {@code transferType}
     * @exception ArrayIndexOutOfBoundsException if
     *  {@code inData} is not large enough to hold a pixel value
     *  for this {@code ColorModel}
     * @exception UnsupportedOperationException if this
     *  {@code tranferType} is not supported by this
     *  {@code ColorModel}
     */
    public int getAlpha(Object inData) {
        int pixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            pixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) inData;
            pixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            pixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getAlpha(pixel);
    }

    /**
     * Returns the color/alpha components for the specified pixel in the
     * default RGB color model format.  A color conversion is done if
     * necessary.  The pixel value is specified by an array of data
     * elements of type {@code transferType} passed in as an object
     * reference.  If {@code inData} is not a primitive array of type
     * {@code transferType}, a {@code ClassCastException} is
     * thrown.  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code inData} is not large enough to hold a pixel
     * value for this {@code ColorModel}.
     * The returned value is in a non pre-multiplied format.  Thus, if
     * the alpha is premultiplied, this method divides it out of the
     * color components.  If the alpha value is 0, for example, the color
     * values is 0.  Since {@code DirectColorModel} can be
     * subclassed, subclasses inherit the implementation of this method
     * and if they don't override it then
     * they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param inData the specified pixel
     * @return the color and alpha components of the specified pixel.
     * @exception UnsupportedOperationException if this
     *            {@code transferType} is not supported by this
     *            {@code ColorModel}
     * @see ColorModel#getRGBdefault
     */
    public int getRGB(Object inData) {
        int pixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) inData;
            pixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) inData;
            pixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) inData;
            pixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getRGB(pixel);
    }

    /**
     * Returns a data element array representation of a pixel in this
     * {@code ColorModel}, given an integer pixel representation in the
     * default RGB color model.
     * This array can then be passed to the {@code setDataElements}
     * method of a {@code WritableRaster} object.  If the pixel variable
     * is {@code null}, a new array is allocated.  If {@code pixel}
     * is not {@code null}, it must be a primitive array of type
     * {@code transferType}; otherwise, a
     * {@code ClassCastException} is thrown.  An
     * {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code pixel} is not large enough to hold a pixel
     * value for this {@code ColorModel}.  The pixel array is returned.
     * Since {@code DirectColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't
     * override it then they throw an exception if they use an unsupported
     * {@code transferType}.
     *
     * @param rgb the integer pixel representation in the default RGB
     *            color model
     * @param pixel the specified pixel
     * @return an array representation of the specified pixel in this
     *         {@code ColorModel}
     * @exception ClassCastException if {@code pixel}
     *  is not a primitive array of type {@code transferType}
     * @exception ArrayIndexOutOfBoundsException if
     *  {@code pixel} is not large enough to hold a pixel value
     *  for this {@code ColorModel}
     * @exception UnsupportedOperationException if this
     *  {@code transferType} is not supported by this
     *  {@code ColorModel}
     * @see WritableRaster#setDataElements
     * @see SampleModel#setDataElements
     */
    public Object getDataElements(int rgb, Object pixel) {
        //REMIND: maybe more efficient not to use int array for
        //DataBuffer.TYPE_USHORT and DataBuffer.TYPE_INT
        int[] intpixel = null;
        if (transferType == DataBuffer.TYPE_INT && pixel != null) {
            intpixel = (int[]) pixel;
            intpixel[0] = 0;
        } else {
            intpixel = new int[1];
        }

        ColorModel defaultCM = ColorModel.getRGBdefault();
        if (this == defaultCM || equals(defaultCM)) {
            intpixel[0] = rgb;
            return intpixel;
        }

        int red, grn, blu, alp;
        red = (rgb >> 16) & 0xff;
        grn = (rgb >> 8) & 0xff;
        blu = rgb & 0xff;
        if (is_sRGB || is_LinearRGB) {
            int precision;
            float factor;
            if (is_LinearRGB) {
                if (lRGBprecision == 8) {
                    red = fromsRGB8LUT8[red] & 0xff;
                    grn = fromsRGB8LUT8[grn] & 0xff;
                    blu = fromsRGB8LUT8[blu] & 0xff;
                    precision = 8;
                    factor = 1.0f / 255.0f;
                } else {
                    red = fromsRGB8LUT16[red] & 0xffff;
                    grn = fromsRGB8LUT16[grn] & 0xffff;
                    blu = fromsRGB8LUT16[blu] & 0xffff;
                    precision = 16;
                    factor = 1.0f / 65535.0f;
                }
            } else {
                precision = 8;
                factor = 1.0f / 255.0f;
            }
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (isAlphaPremultiplied) {
                    factor *= (alp * (1.0f / 255.0f));
                    precision = -1; // force component calculations below
                }
                if (nBits[3] != 8) {
                    alp = (int) ((alp * (1.0f / 255.0f) * ((1 << nBits[3]) - 1)) + 0.5f);
                    if (alp > ((1 << nBits[3]) - 1)) {
                        // fix 4412670 - see comment below
                        alp = (1 << nBits[3]) - 1;
                    }
                }
                intpixel[0] = alp << maskOffsets[3];
            }
            if (nBits[0] != precision) {
                red = (int) ((red * factor * ((1 << nBits[0]) - 1)) + 0.5f);
            }
            if (nBits[1] != precision) {
                grn = (int) ((grn * factor * ((1 << nBits[1]) - 1)) + 0.5f);
            }
            if (nBits[2] != precision) {
                blu = (int) ((blu * factor * ((1 << nBits[2]) - 1)) + 0.5f);
            }
        } else {
            // Need to convert the color
            float[] norm = new float[3];
            float factor = 1.0f / 255.0f;
            norm[0] = red * factor;
            norm[1] = grn * factor;
            norm[2] = blu * factor;
            norm = colorSpace.fromRGB(norm);
            if (supportsAlpha) {
                alp = (rgb >> 24) & 0xff;
                if (isAlphaPremultiplied) {
                    factor *= alp;
                    for (int i = 0; i < 3; i++) {
                        norm[i] *= factor;
                    }
                }
                if (nBits[3] != 8) {
                    alp = (int) ((alp * (1.0f / 255.0f) * ((1 << nBits[3]) - 1)) + 0.5f);
                    if (alp > ((1 << nBits[3]) - 1)) {
                        // fix 4412670 - see comment below
                        alp = (1 << nBits[3]) - 1;
                    }
                }
                intpixel[0] = alp << maskOffsets[3];
            }
            red = (int) ((norm[0] * ((1 << nBits[0]) - 1)) + 0.5f);
            grn = (int) ((norm[1] * ((1 << nBits[1]) - 1)) + 0.5f);
            blu = (int) ((norm[2] * ((1 << nBits[2]) - 1)) + 0.5f);
        }

        if (maxBits > 23) {
            // fix 4412670 - for components of 24 or more bits
            // some calculations done above with float precision
            // may lose enough precision that the integer result
            // overflows nBits, so we need to clamp.
            if (red > ((1 << nBits[0]) - 1)) {
                red = (1 << nBits[0]) - 1;
            }
            if (grn > ((1 << nBits[1]) - 1)) {
                grn = (1 << nBits[1]) - 1;
            }
            if (blu > ((1 << nBits[2]) - 1)) {
                blu = (1 << nBits[2]) - 1;
            }
        }

        intpixel[0] |= (red << maskOffsets[0]) | (grn << maskOffsets[1]) | (blu << maskOffsets[2]);

        switch (transferType) {
        case DataBuffer.TYPE_BYTE: {
            byte[] bdata;
            if (pixel == null) {
                bdata = new byte[1];
            } else {
                bdata = (byte[]) pixel;
            }
            bdata[0] = (byte) (0xff & intpixel[0]);
            return bdata;
        }
        case DataBuffer.TYPE_USHORT: {
            short[] sdata;
            if (pixel == null) {
                sdata = new short[1];
            } else {
                sdata = (short[]) pixel;
            }
            sdata[0] = (short) (intpixel[0] & 0xffff);
            return sdata;
        }
        case DataBuffer.TYPE_INT:
            return intpixel;
        }
        throw new UnsupportedOperationException(
                "This method has not been " + "implemented for transferType " + transferType);

    }

    /**
     * Returns an array of unnormalized color/alpha components given a pixel
     * in this {@code ColorModel}.  The pixel value is specified as an
     * {@code int}.  If the {@code components} array is
     * {@code null}, a new array is allocated.  The
     * {@code components} array is returned.  Color/alpha components are
     * stored in the {@code components} array starting at
     * {@code offset}, even if the array is allocated by this method.
     * An {@code ArrayIndexOutOfBoundsException} is thrown if the
     * {@code components} array is not {@code null} and is not large
     * enough to hold all the color and alpha components, starting at
     * {@code offset}.
     * @param pixel the specified pixel
     * @param components the array to receive the color and alpha
     * components of the specified pixel
     * @param offset the offset into the {@code components} array at
     * which to start storing the color and alpha components
     * @return an array containing the color and alpha components of the
     * specified pixel starting at the specified offset.
     */
    public final int[] getComponents(int pixel, int[] components, int offset) {
        if (components == null) {
            components = new int[offset + numComponents];
        }

        for (int i = 0; i < numComponents; i++) {
            components[offset + i] = (pixel & maskArray[i]) >>> maskOffsets[i];
        }

        return components;
    }

    /**
     * Returns an array of unnormalized color/alpha components given a pixel
     * in this {@code ColorModel}.  The pixel value is specified by an
     * array of data elements of type {@code transferType} passed in as
     * an object reference.  If {@code pixel} is not a primitive array
     * of type {@code transferType}, a {@code ClassCastException}
     * is thrown.  An {@code ArrayIndexOutOfBoundsException} is
     * thrown if {@code pixel} is not large enough to hold a
     * pixel value for this {@code ColorModel}.  If the
     * {@code components} array is {@code null}, a new
     * array is allocated.  The {@code components} array is returned.
     * Color/alpha components are stored in the {@code components} array
     * starting at {@code offset}, even if the array is allocated by
     * this method.  An {@code ArrayIndexOutOfBoundsException}
     * is thrown if the {@code components} array is not
     * {@code null} and is not large enough to hold all the color and
     * alpha components, starting at {@code offset}.
     * Since {@code DirectColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't
     * override it then they throw an exception if they use an unsupported
     * {@code transferType}.
     * @param pixel the specified pixel
     * @param components the array to receive the color and alpha
     *        components of the specified pixel
     * @param offset the offset into the {@code components} array at
     *        which to start storing the color and alpha components
     * @return an array containing the color and alpha components of the
     * specified pixel starting at the specified offset.
     * @exception ClassCastException if {@code pixel}
     *  is not a primitive array of type {@code transferType}
     * @exception ArrayIndexOutOfBoundsException if
     *  {@code pixel} is not large enough to hold a pixel value
     *  for this {@code ColorModel}, or if {@code components}
     *  is not {@code null} and is not large enough to hold all the
     *  color and alpha components, starting at {@code offset}
     * @exception UnsupportedOperationException if this
     *            {@code transferType} is not supported by this
     *            color model
     */
    public final int[] getComponents(Object pixel, int[] components, int offset) {
        int intpixel = 0;
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            byte[] bdata = (byte[]) pixel;
            intpixel = bdata[0] & 0xff;
            break;
        case DataBuffer.TYPE_USHORT:
            short[] sdata = (short[]) pixel;
            intpixel = sdata[0] & 0xffff;
            break;
        case DataBuffer.TYPE_INT:
            int[] idata = (int[]) pixel;
            intpixel = idata[0];
            break;
        default:
            throw new UnsupportedOperationException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
        return getComponents(intpixel, components, offset);
    }

    /**
     * Creates a {@code WritableRaster} with the specified width and
     * height that has a data layout ({@code SampleModel}) compatible
     * with this {@code ColorModel}.
     * @param w the width to apply to the new {@code WritableRaster}
     * @param h the height to apply to the new {@code WritableRaster}
     * @return a {@code WritableRaster} object with the specified
     * width and height.
     * @throws IllegalArgumentException if {@code w} or {@code h}
     *         is less than or equal to zero
     * @see WritableRaster
     * @see SampleModel
     */
    public final WritableRaster createCompatibleWritableRaster(int w, int h) {
        if ((w <= 0) || (h <= 0)) {
            throw new IllegalArgumentException("Width (" + w + ") and height (" + h + ") cannot be <= 0");
        }
        int[] bandmasks;
        if (supportsAlpha) {
            bandmasks = new int[4];
            bandmasks[3] = alpha_mask;
        } else {
            bandmasks = new int[3];
        }
        bandmasks[0] = red_mask;
        bandmasks[1] = green_mask;
        bandmasks[2] = blue_mask;

        if (pixel_bits > 16) {
            return Raster.createPackedRaster(DataBuffer.TYPE_INT, w, h, bandmasks, null);
        } else if (pixel_bits > 8) {
            return Raster.createPackedRaster(DataBuffer.TYPE_USHORT, w, h, bandmasks, null);
        } else {
            return Raster.createPackedRaster(DataBuffer.TYPE_BYTE, w, h, bandmasks, null);
        }
    }

    /**
     * Returns a pixel value represented as an {@code int} in this
     * {@code ColorModel}, given an array of unnormalized color/alpha
     * components.   An {@code ArrayIndexOutOfBoundsException} is
     * thrown if the {@code components} array is
     * not large enough to hold all the color and alpha components, starting
     * at {@code offset}.
     * @param components an array of unnormalized color and alpha
     * components
     * @param offset the index into {@code components} at which to
     * begin retrieving the color and alpha components
     * @return an {@code int} pixel value in this
     * {@code ColorModel} corresponding to the specified components.
     * @exception ArrayIndexOutOfBoundsException if
     *  the {@code components} array is not large enough to
     *  hold all of the color and alpha components starting at
     *  {@code offset}
     */
    public int getDataElement(int[] components, int offset) {
        int pixel = 0;
        for (int i = 0; i < numComponents; i++) {
            pixel |= ((components[offset + i] << maskOffsets[i]) & maskArray[i]);
        }
        return pixel;
    }

    /**
     * Returns a data element array representation of a pixel in this
     * {@code ColorModel}, given an array of unnormalized color/alpha
     * components.
     * This array can then be passed to the {@code setDataElements}
     * method of a {@code WritableRaster} object.
     * An {@code ArrayIndexOutOfBoundsException} is thrown if the
     * {@code components} array
     * is not large enough to hold all the color and alpha components,
     * starting at offset.  If the {@code obj} variable is
     * {@code null}, a new array is allocated.  If {@code obj} is
     * not {@code null}, it must be a primitive array
     * of type {@code transferType}; otherwise, a
     * {@code ClassCastException} is thrown.
     * An {@code ArrayIndexOutOfBoundsException} is thrown if
     * {@code obj} is not large enough to hold a pixel value for this
     * {@code ColorModel}.
     * Since {@code DirectColorModel} can be subclassed, subclasses
     * inherit the implementation of this method and if they don't
     * override it then they throw an exception if they use an unsupported
     * {@code transferType}.
     * @param components an array of unnormalized color and alpha
     * components
     * @param offset the index into {@code components} at which to
     * begin retrieving color and alpha components
     * @param obj the {@code Object} representing an array of color
     * and alpha components
     * @return an {@code Object} representing an array of color and
     * alpha components.
     * @exception ClassCastException if {@code obj}
     *  is not a primitive array of type {@code transferType}
     * @exception ArrayIndexOutOfBoundsException if
     *  {@code obj} is not large enough to hold a pixel value
     *  for this {@code ColorModel} or the {@code components}
     *  array is not large enough to hold all of the color and alpha
     *  components starting at {@code offset}
     * @exception UnsupportedOperationException if this
     *            {@code transferType} is not supported by this
     *            color model
     * @see WritableRaster#setDataElements
     * @see SampleModel#setDataElements
     */
    public Object getDataElements(int[] components, int offset, Object obj) {
        int pixel = 0;
        for (int i = 0; i < numComponents; i++) {
            pixel |= ((components[offset + i] << maskOffsets[i]) & maskArray[i]);
        }
        switch (transferType) {
        case DataBuffer.TYPE_BYTE:
            if (obj instanceof byte[]) {
                byte[] bdata = (byte[]) obj;
                bdata[0] = (byte) (pixel & 0xff);
                return bdata;
            } else {
                byte[] bdata = { (byte) (pixel & 0xff) };
                return bdata;
            }
        case DataBuffer.TYPE_USHORT:
            if (obj instanceof short[]) {
                short[] sdata = (short[]) obj;
                sdata[0] = (short) (pixel & 0xffff);
                return sdata;
            } else {
                short[] sdata = { (short) (pixel & 0xffff) };
                return sdata;
            }
        case DataBuffer.TYPE_INT:
            if (obj instanceof int[]) {
                int[] idata = (int[]) obj;
                idata[0] = pixel;
                return idata;
            } else {
                int[] idata = { pixel };
                return idata;
            }
        default:
            throw new ClassCastException(
                    "This method has not been " + "implemented for transferType " + transferType);
        }
    }

    /**
     * Forces the raster data to match the state specified in the
     * {@code isAlphaPremultiplied} variable, assuming the data is
     * currently correctly described by this {@code ColorModel}.  It
     * may multiply or divide the color raster data by alpha, or do
     * nothing if the data is in the correct state.  If the data needs to
     * be coerced, this method will also return an instance of this
     * {@code ColorModel} with the {@code isAlphaPremultiplied}
     * flag set appropriately.  This method will throw a
     * {@code UnsupportedOperationException} if this transferType is
     * not supported by this {@code ColorModel}.  Since
     * {@code ColorModel} can be subclassed, subclasses inherit the
     * implementation of this method and if they don't override it then
     * they throw an exception if they use an unsupported transferType.
     *
     * @param raster the {@code WritableRaster} data
     * @param isAlphaPremultiplied {@code true} if the alpha is
     * premultiplied; {@code false} otherwise
     * @return a {@code ColorModel} object that represents the
     * coerced data.
     * @exception UnsupportedOperationException if this
     *            {@code transferType} is not supported by this
     *            color model
     */
    public final ColorModel coerceData(WritableRaster raster, boolean isAlphaPremultiplied) {
        if (!supportsAlpha || this.isAlphaPremultiplied() == isAlphaPremultiplied) {
            return this;
        }

        int w = raster.getWidth();
        int h = raster.getHeight();
        int aIdx = numColorComponents;
        float normAlpha;
        float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));

        int rminX = raster.getMinX();
        int rY = raster.getMinY();
        int rX;
        int[] pixel = null;
        int[] zpixel = null;

        if (isAlphaPremultiplied) {
            // Must mean that we are currently not premultiplied so
            // multiply by alpha
            switch (transferType) {
            case DataBuffer.TYPE_BYTE: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * normAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new int[numComponents];
                                java.util.Arrays.fill(zpixel, 0);
                            }
                            raster.setPixel(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_USHORT: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * normAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new int[numComponents];
                                java.util.Arrays.fill(zpixel, 0);
                            }
                            raster.setPixel(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_INT: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.f) {
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * normAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        } else {
                            if (zpixel == null) {
                                zpixel = new int[numComponents];
                                java.util.Arrays.fill(zpixel, 0);
                            }
                            raster.setPixel(rX, rY, zpixel);
                        }
                    }
                }
            }
                break;
            default:
                throw new UnsupportedOperationException(
                        "This method has not been " + "implemented for transferType " + transferType);
            }
        } else {
            // We are premultiplied and want to divide it out
            switch (transferType) {
            case DataBuffer.TYPE_BYTE: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0.0f) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * invAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_USHORT: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * invAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            case DataBuffer.TYPE_INT: {
                for (int y = 0; y < h; y++, rY++) {
                    rX = rminX;
                    for (int x = 0; x < w; x++, rX++) {
                        pixel = raster.getPixel(rX, rY, pixel);
                        normAlpha = pixel[aIdx] * alphaScale;
                        if (normAlpha != 0) {
                            float invAlpha = 1.0f / normAlpha;
                            for (int c = 0; c < aIdx; c++) {
                                pixel[c] = (int) (pixel[c] * invAlpha + 0.5f);
                            }
                            raster.setPixel(rX, rY, pixel);
                        }
                    }
                }
            }
                break;
            default:
                throw new UnsupportedOperationException(
                        "This method has not been " + "implemented for transferType " + transferType);
            }
        }

        // Return a new color model
        return new DirectColorModel(colorSpace, pixel_bits, maskArray[0], maskArray[1], maskArray[2], maskArray[3],
                isAlphaPremultiplied, transferType);

    }

    /**
      * Returns {@code true} if {@code raster} is compatible
      * with this {@code ColorModel} and {@code false} if it is
      * not.
      * @param raster the {@link Raster} object to test for compatibility
      * @return {@code true} if {@code raster} is compatible
      * with this {@code ColorModel}; {@code false} otherwise.
      */
    public boolean isCompatibleRaster(Raster raster) {
        SampleModel sm = raster.getSampleModel();
        SinglePixelPackedSampleModel spsm;
        if (sm instanceof SinglePixelPackedSampleModel) {
            spsm = (SinglePixelPackedSampleModel) sm;
        } else {
            return false;
        }
        if (spsm.getNumBands() != getNumComponents()) {
            return false;
        }

        int[] bitMasks = spsm.getBitMasks();
        for (int i = 0; i < numComponents; i++) {
            if (bitMasks[i] != maskArray[i]) {
                return false;
            }
        }

        return (raster.getTransferType() == transferType);
    }

    private void setFields() {
        // Set the private fields
        // REMIND: Get rid of these from the native code
        red_mask = maskArray[0];
        red_offset = maskOffsets[0];
        green_mask = maskArray[1];
        green_offset = maskOffsets[1];
        blue_mask = maskArray[2];
        blue_offset = maskOffsets[2];
        if (nBits[0] < 8) {
            red_scale = (1 << nBits[0]) - 1;
        }
        if (nBits[1] < 8) {
            green_scale = (1 << nBits[1]) - 1;
        }
        if (nBits[2] < 8) {
            blue_scale = (1 << nBits[2]) - 1;
        }
        if (supportsAlpha) {
            alpha_mask = maskArray[3];
            alpha_offset = maskOffsets[3];
            if (nBits[3] < 8) {
                alpha_scale = (1 << nBits[3]) - 1;
            }
        }
    }

    /**
     * Returns a {@code String} that represents this
     * {@code DirectColorModel}.
     * @return a {@code String} representing this
     * {@code DirectColorModel}.
     */
    public String toString() {
        return new String("DirectColorModel: rmask=" + Integer.toHexString(red_mask) + " gmask="
                + Integer.toHexString(green_mask) + " bmask=" + Integer.toHexString(blue_mask) + " amask="
                + Integer.toHexString(alpha_mask));
    }
}