Java tutorial
/* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ import java.awt.AlphaComposite; import java.awt.BasicStroke; import java.awt.Color; import java.awt.Composite; import java.awt.Font; import java.awt.FontMetrics; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.Image; import java.awt.Paint; import java.awt.Polygon; import java.awt.Rectangle; import java.awt.RenderingHints; import java.awt.Shape; import java.awt.Stroke; import java.awt.font.FontRenderContext; import java.awt.font.GlyphVector; import java.awt.geom.AffineTransform; import java.awt.geom.Arc2D; import java.awt.geom.Area; import java.awt.geom.Ellipse2D; import java.awt.geom.GeneralPath; import java.awt.geom.Line2D; import java.awt.geom.NoninvertibleTransformException; import java.awt.geom.RoundRectangle2D; import java.awt.image.BufferedImage; import java.awt.image.BufferedImageOp; import java.awt.image.ImageObserver; import java.awt.image.RenderedImage; import java.awt.image.renderable.RenderableImage; import java.text.AttributedCharacterIterator; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * This concrete implementation of <tt>AbstractGraphics2D</tt> is a simple * help to programmers to get started with their own implementation of * <tt>Graphics2D</tt>. <tt>DefaultGraphics2D</tt> implements all the * abstract methods is <tt>AbstractGraphics2D</tt> and makes it easy to start * implementing a <tt>Graphic2D</tt> piece-meal. * * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a> * @version $Id: DefaultGraphics2D.java 475477 2006-11-15 22:44:28Z cam $ * @see org.apache.batik.ext.awt.g2d.AbstractGraphics2D */ public class DefaultGraphics2D extends AbstractGraphics2D { /** * Default constructor */ public DefaultGraphics2D(boolean textAsShapes) { super(textAsShapes); } /** * This constructor supports the create method */ public DefaultGraphics2D(DefaultGraphics2D g) { super(g); } /** * Creates a new <code>Graphics</code> object that is a copy of this * <code>Graphics</code> object. * * @return a new graphics context that is a copy of this graphics context. */ public Graphics create() { return new DefaultGraphics2D(this); } /** * Draws as much of the specified image as is currently available. The image * is drawn with its top-left corner at (<i>x</i>, <i>y</i>) in this * graphics context's coordinate space. Transparent pixels in the image do not * affect whatever pixels are already there. * <p> * This method returns immediately in all cases, even if the complete image * has not yet been loaded, and it has not been dithered and converted for the * current output device. * <p> * If the image has not yet been completely loaded, then * <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * specified image observer. * * @param img * the specified image to be drawn. * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @param observer * object to be notified as more of the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) */ public boolean drawImage(Image img, int x, int y, ImageObserver observer) { System.err.println("drawImage"); return true; } /** * Draws as much of the specified image as has already been scaled to fit * inside the specified rectangle. * <p> * The image is drawn inside the specified rectangle of this graphics * context's coordinate space, and is scaled if necessary. Transparent pixels * do not affect whatever pixels are already there. * <p> * This method returns immediately in all cases, even if the entire image has * not yet been scaled, dithered, and converted for the current output device. * If the current output representation is not yet complete, then * <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * image observer by calling its <code>imageUpdate</code> method. * <p> * A scaled version of an image will not necessarily be available immediately * just because an unscaled version of the image has been constructed for this * output device. Each size of the image may be cached separately and * generated from the original data in a separate image production sequence. * * @param img * the specified image to be drawn. * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @param width * the width of the rectangle. * @param height * the height of the rectangle. * @param observer * object to be notified as more of the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) */ public boolean drawImage(Image img, int x, int y, int width, int height, ImageObserver observer) { System.out.println("drawImage"); return true; } /** * Disposes of this graphics context and releases any system resources that it * is using. A <code>Graphics</code> object cannot be used after * <code>dispose</code>has been called. * <p> * When a Java program runs, a large number of <code>Graphics</code> objects * can be created within a short time frame. Although the finalization process * of the garbage collector also disposes of the same system resources, it is * preferable to manually free the associated resources by calling this method * rather than to rely on a finalization process which may not run to * completion for a long period of time. * <p> * Graphics objects which are provided as arguments to the <code>paint</code> * and <code>update</code> methods of components are automatically released * by the system when those methods return. For efficiency, programmers should * call <code>dispose</code> when finished using a <code>Graphics</code> * object only if it was created directly from a component or another * <code>Graphics</code> object. * * @see java.awt.Graphics#finalize * @see java.awt.Component#paint * @see java.awt.Component#update * @see java.awt.Component#getGraphics * @see java.awt.Graphics#create() */ public void dispose() { System.out.println("dispose"); } /** * Strokes the outline of a <code>Shape</code> using the settings of the * current <code>Graphics2D</code> context. The rendering attributes applied * include the <code>Clip</code>, <code>Transform</code>, * <code>Paint</code>, <code>Composite</code> and <code>Stroke</code> * attributes. * * @param s * the <code>Shape</code> to be rendered * @see #setStroke(java.awt.Stroke) * @see #setPaint(java.awt.Paint) * @see java.awt.Graphics#setColor * @see #setTransform(AffineTransform) * @see #setClip(Shape) * @see #setComposite(java.awt.Composite) */ public void draw(Shape s) { System.out.println("draw(Shape)"); } /** * Renders a {@link RenderedImage}, applying a transform from image space * into user space before drawing. The transformation from user space into * device space is done with the current <code>Transform</code> in the * <code>Graphics2D</code>. The specified transformation is applied to the * image before the transform attribute in the <code>Graphics2D</code> * context is applied. The rendering attributes applied include the * <code>Clip</code>, <code>Transform</code>, and <code>Composite</code> * attributes. Note that no rendering is done if the specified transform is * noninvertible. * * @param img * the image to be rendered * @param xform * the transformation from image space into user space * @see #setTransform(AffineTransform) * @see #setComposite(java.awt.Composite) * @see #setClip(Shape) */ public void drawRenderedImage(RenderedImage img, AffineTransform xform) { System.out.println("drawRenderedImage"); } /** * Renders a {@link RenderableImage}, applying a transform from image space * into user space before drawing. The transformation from user space into * device space is done with the current <code>Transform</code> in the * <code>Graphics2D</code>. The specified transformation is applied to the * image before the transform attribute in the <code>Graphics2D</code> * context is applied. The rendering attributes applied include the * <code>Clip</code>, <code>Transform</code>, and <code>Composite</code> * attributes. Note that no rendering is done if the specified transform is * noninvertible. * <p> * Rendering hints set on the <code>Graphics2D</code> object might be used * in rendering the <code>RenderableImage</code>. If explicit control is * required over specific hints recognized by a specific * <code>RenderableImage</code>, or if knowledge of which hints are used is * required, then a <code>RenderedImage</code> should be obtained directly * from the <code>RenderableImage</code> and rendered using * {@link #drawRenderedImage(RenderedImage, AffineTransform) drawRenderedImage}. * * @param img * the image to be rendered * @param xform * the transformation from image space into user space * @see #setTransform(AffineTransform) * @see #setComposite(java.awt.Composite) * @see #setClip(Shape) * @see #drawRenderedImage */ public void drawRenderableImage(RenderableImage img, AffineTransform xform) { System.out.println("drawRenderableImage"); } /** * Renders the text specified by the specified <code>String</code>, using * the current <code>Font</code> and <code>Paint</code> attributes in the * <code>Graphics2D</code> context. The baseline of the first character is * at position (<i>x</i>, <i>y</i>) in the User Space. The rendering * attributes applied include the <code>Clip</code>, <code>Transform</code>, * <code>Paint</code>, <code>Font</code> and <code>Composite</code> * attributes. For characters in script systems such as Hebrew and Arabic, the * glyphs can be rendered from right to left, in which case the coordinate * supplied is the location of the leftmost character on the baseline. * * @param s * the <code>String</code> to be rendered * @param x * the x coordinate where the <code>String</code> should be * rendered * @param y * the y coordinate where the <code>String</code> should be * rendered * @see #setPaint(java.awt.Paint) * @see java.awt.Graphics#setColor * @see java.awt.Graphics#setFont * @see #setTransform(AffineTransform) * @see #setComposite(java.awt.Composite) * @see #setClip(Shape) */ public void drawString(String s, float x, float y) { System.out.println("drawString(String)"); } /** * Renders the text of the specified iterator, using the * <code>Graphics2D</code> context's current <code>Paint</code>. The * iterator must specify a font for each character. The baseline of the first * character is at position (<i>x</i>, <i>y</i>) in the User Space. * The rendering attributes applied include the <code>Clip</code>, * <code>Transform</code>, <code>Paint</code>, and * <code>Composite</code> attributes. For characters in script systems such * as Hebrew and Arabic, the glyphs can be rendered from right to left, in * which case the coordinate supplied is the location of the leftmost * character on the baseline. * * @param iterator * the iterator whose text is to be rendered * @param x * the x coordinate where the iterator's text is to be rendered * @param y * the y coordinate where the iterator's text is to be rendered * @see #setPaint(java.awt.Paint) * @see java.awt.Graphics#setColor * @see #setTransform(AffineTransform) * @see #setComposite(java.awt.Composite) * @see #setClip(Shape) */ public void drawString(AttributedCharacterIterator iterator, float x, float y) { System.err.println("drawString(AttributedCharacterIterator)"); } /** * Fills the interior of a <code>Shape</code> using the settings of the * <code>Graphics2D</code> context. The rendering attributes applied include * the <code>Clip</code>, <code>Transform</code>, <code>Paint</code>, * and <code>Composite</code>. * * @param s * the <code>Shape</code> to be filled * @see #setPaint(java.awt.Paint) * @see java.awt.Graphics#setColor * @see #setTransform(AffineTransform) * @see #setComposite(java.awt.Composite) * @see #setClip(Shape) */ public void fill(Shape s) { System.err.println("fill"); } /** * Returns the device configuration associated with this * <code>Graphics2D</code>. */ public GraphicsConfiguration getDeviceConfiguration() { System.out.println("getDeviceConviguration"); return null; } /** * Used to create proper font metrics */ private Graphics2D fmg; { BufferedImage bi = new BufferedImage(1, 1, BufferedImage.TYPE_INT_ARGB); fmg = bi.createGraphics(); } /** * Gets the font metrics for the specified font. * * @return the font metrics for the specified font. * @param f * the specified font * @see java.awt.Graphics#getFont * @see java.awt.FontMetrics * @see java.awt.Graphics#getFontMetrics() */ public FontMetrics getFontMetrics(Font f) { return fmg.getFontMetrics(f); } /** * Sets the paint mode of this graphics context to alternate between this * graphics context's current color and the new specified color. This * specifies that logical pixel operations are performed in the XOR mode, * which alternates pixels between the current color and a specified XOR * color. * <p> * When drawing operations are performed, pixels which are the current color * are changed to the specified color, and vice versa. * <p> * Pixels that are of colors other than those two colors are changed in an * unpredictable but reversible manner; if the same figure is drawn twice, * then all pixels are restored to their original values. * * @param c1 * the XOR alternation color */ public void setXORMode(Color c1) { System.out.println("setXORMode"); } /** * Copies an area of the component by a distance specified by <code>dx</code> * and <code>dy</code>. From the point specified by <code>x</code> and * <code>y</code>, this method copies downwards and to the right. To copy * an area of the component to the left or upwards, specify a negative value * for <code>dx</code> or <code>dy</code>. If a portion of the source * rectangle lies outside the bounds of the component, or is obscured by * another window or component, <code>copyArea</code> will be unable to copy * the associated pixels. The area that is omitted can be refreshed by calling * the component's <code>paint</code> method. * * @param x * the <i>x</i> coordinate of the source rectangle. * @param y * the <i>y</i> coordinate of the source rectangle. * @param width * the width of the source rectangle. * @param height * the height of the source rectangle. * @param dx * the horizontal distance to copy the pixels. * @param dy * the vertical distance to copy the pixels. */ public void copyArea(int x, int y, int width, int height, int dx, int dy) { System.out.println("copyArea"); } } /* * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * */ /** * This extension of the <tt>java.awt.Graphics2D</tt> abstract class is still * abstract, but it implements a lot of the <tt>Graphics2D</tt> method in a * way that concrete implementations can reuse. * * This class uses a <tt>GraphicContext</tt> to store the state of its various * attributes that control the rendering, such as the current <tt>Font</tt>, * <tt>Paint</tt> or clip. * * Concrete implementations can focus on implementing the rendering methods, * such as <tt>drawShape</tt>. As a convenience, rendering methods that can * be expressed with other rendering methods (e.g., <tt>drawRect</tt> can be * expressed as <tt>draw(new Rectangle(..))</tt>), are implemented by * <tt>AbstractGraphics2D</tt> * * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a> * @version $Id: AbstractGraphics2D.java 504084 2007-02-06 11:24:46Z dvholten $ * @see org.apache.batik.ext.awt.g2d.GraphicContext */ abstract class AbstractGraphics2D extends Graphics2D implements Cloneable { /** * Current state of the Graphic Context. The GraphicsContext class manages the * state of this <tt>Graphics2D</tt> graphic context attributes. */ protected GraphicContext gc; /** * Text handling strategy. */ protected boolean textAsShapes = false; /** * @param textAsShapes * if true, all text is turned into shapes in the convertion. No text * is output. * */ public AbstractGraphics2D(boolean textAsShapes) { this.textAsShapes = textAsShapes; } /** * Creates a new AbstractGraphics2D from an existing instance. * * @param g * the AbstractGraphics2D whose properties should be copied */ public AbstractGraphics2D(AbstractGraphics2D g) { this.gc = (GraphicContext) g.gc.clone(); this.gc.validateTransformStack(); this.textAsShapes = g.textAsShapes; } /** * Translates the origin of the graphics context to the point (<i>x</i>, <i>y</i>) * in the current coordinate system. Modifies this graphics context so that * its new origin corresponds to the point (<i>x</i>, <i>y</i>) in * this graphics context's original coordinate system. All coordinates used in * subsequent rendering operations on this graphics context will be relative * to this new origin. * * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. */ public void translate(int x, int y) { gc.translate(x, y); } /** * Gets this graphics context's current color. * * @return this graphics context's current color. * @see java.awt.Color * @see java.awt.Graphics#setColor */ public Color getColor() { return gc.getColor(); } /** * Sets this graphics context's current color to the specified color. All * subsequent graphics operations using this graphics context use this * specified color. * * @param c * the new rendering color. * @see java.awt.Color * @see java.awt.Graphics#getColor */ public void setColor(Color c) { gc.setColor(c); } /** * Sets the paint mode of this graphics context to overwrite the destination * with this graphics context's current color. This sets the logical pixel * operation function to the paint or overwrite mode. All subsequent rendering * operations will overwrite the destination with the current color. */ public void setPaintMode() { gc.setComposite(AlphaComposite.SrcOver); } /** * Gets the current font. * * @return this graphics context's current font. * @see java.awt.Font * @see java.awt.Graphics#setFont */ public Font getFont() { return gc.getFont(); } /** * Sets this graphics context's font to the specified font. All subsequent * text operations using this graphics context use this font. * * @param font * the font. * @see java.awt.Graphics#getFont */ public void setFont(Font font) { gc.setFont(font); } /** * Returns the bounding rectangle of the current clipping area. This method * refers to the user clip, which is independent of the clipping associated * with device bounds and window visibility. If no clip has previously been * set, or if the clip has been cleared using <code>setClip(null)</code>, * this method returns <code>null</code>. The coordinates in the rectangle * are relative to the coordinate system origin of this graphics context. * * @return the bounding rectangle of the current clipping area, or * <code>null</code> if no clip is set. * @see java.awt.Graphics#getClip * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(int, int, int, int) * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public Rectangle getClipBounds() { return gc.getClipBounds(); } /** * Intersects the current clip with the specified rectangle. The resulting * clipping area is the intersection of the current clipping area and the * specified rectangle. If there is no current clipping area, either because * the clip has never been set, or the clip has been cleared using * <code>setClip(null)</code>, the specified rectangle becomes the new * clip. This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. This method can only * be used to make the current clip smaller. To set the current clip larger, * use any of the setClip methods. Rendering operations have no effect outside * of the clipping area. * * @param x * the x coordinate of the rectangle to intersect the clip with * @param y * the y coordinate of the rectangle to intersect the clip with * @param width * the width of the rectangle to intersect the clip with * @param height * the height of the rectangle to intersect the clip with * @see #setClip(int, int, int, int) * @see #setClip(Shape) */ public void clipRect(int x, int y, int width, int height) { gc.clipRect(x, y, width, height); } /** * Sets the current clip to the rectangle specified by the given coordinates. * This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. Rendering operations * have no effect outside of the clipping area. * * @param x * the <i>x</i> coordinate of the new clip rectangle. * @param y * the <i>y</i> coordinate of the new clip rectangle. * @param width * the width of the new clip rectangle. * @param height * the height of the new clip rectangle. * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public void setClip(int x, int y, int width, int height) { gc.setClip(x, y, width, height); } /** * Gets the current clipping area. This method returns the user clip, which is * independent of the clipping associated with device bounds and window * visibility. If no clip has previously been set, or if the clip has been * cleared using <code>setClip(null)</code>, this method returns * <code>null</code>. * * @return a <code>Shape</code> object representing the current clipping * area, or <code>null</code> if no clip is set. * @see java.awt.Graphics#getClipBounds() * @see java.awt.Graphics#clipRect(int, int, int, int) * @see java.awt.Graphics#setClip(int, int, int, int) * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public Shape getClip() { return gc.getClip(); } /** * Sets the current clipping area to an arbitrary clip shape. Not all objects * that implement the <code>Shape</code> interface can be used to set the * clip. The only <code>Shape</code> objects that are guaranteed to be * supported are <code>Shape</code> objects that are obtained via the * <code>getClip</code> method and via <code>Rectangle</code> objects. * This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. * * @param clip * the <code>Shape</code> to use to set the clip * @see java.awt.Graphics#getClip() * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(int, int, int, int) * @since JDK1.1 */ public void setClip(Shape clip) { gc.setClip(clip); } /** * Draws a line, using the current color, between the points * <code>(x1, y1)</code> and <code>(x2, y2)</code> in this * graphics context's coordinate system. * * @param x1 * the first point's <i>x</i> coordinate. * @param y1 * the first point's <i>y</i> coordinate. * @param x2 * the second point's <i>x</i> coordinate. * @param y2 * the second point's <i>y</i> coordinate. */ public void drawLine(int x1, int y1, int x2, int y2) { Line2D line = new Line2D.Float(x1, y1, x2, y2); draw(line); } /** * Fills the specified rectangle. The left and right edges of the rectangle * are at <code>x</code> and <code>x + width - 1</code>. * The top and bottom edges are at <code>y</code> and * <code>y + height - 1</code>. The resulting rectangle * covers an area <code>width</code> pixels wide by <code>height</code> * pixels tall. The rectangle is filled using the graphics context's current * color. * * @param x * the <i>x</i> coordinate of the rectangle to be filled. * @param y * the <i>y</i> coordinate of the rectangle to be filled. * @param width * the width of the rectangle to be filled. * @param height * the height of the rectangle to be filled. * @see java.awt.Graphics#clearRect * @see java.awt.Graphics#drawRect */ public void fillRect(int x, int y, int width, int height) { Rectangle rect = new Rectangle(x, y, width, height); fill(rect); } public void drawRect(int x, int y, int width, int height) { Rectangle rect = new Rectangle(x, y, width, height); draw(rect); } /** * Clears the specified rectangle by filling it with the background color of * the current drawing surface. This operation does not use the current paint * mode. * <p> * Beginning with Java 1.1, the background color of offscreen images may * be system dependent. Applications should use <code>setColor</code> * followed by <code>fillRect</code> to ensure that an offscreen image is * cleared to a specific color. * * @param x * the <i>x</i> coordinate of the rectangle to clear. * @param y * the <i>y</i> coordinate of the rectangle to clear. * @param width * the width of the rectangle to clear. * @param height * the height of the rectangle to clear. * @see java.awt.Graphics#fillRect(int, int, int, int) * @see java.awt.Graphics#drawRect * @see java.awt.Graphics#setColor(java.awt.Color) * @see java.awt.Graphics#setPaintMode * @see java.awt.Graphics#setXORMode(java.awt.Color) */ public void clearRect(int x, int y, int width, int height) { Paint paint = gc.getPaint(); gc.setColor(gc.getBackground()); fillRect(x, y, width, height); gc.setPaint(paint); } /** * Draws an outlined round-cornered rectangle using this graphics context's * current color. The left and right edges of the rectangle are at * <code>x</code> and <code>x + width</code>, respectively. The * top and bottom edges of the rectangle are at <code>y</code> and * <code>y + height</code>. * * @param x * the <i>x</i> coordinate of the rectangle to be drawn. * @param y * the <i>y</i> coordinate of the rectangle to be drawn. * @param width * the width of the rectangle to be drawn. * @param height * the height of the rectangle to be drawn. * @param arcWidth * the horizontal diameter of the arc at the four corners. * @param arcHeight * the vertical diameter of the arc at the four corners. * @see java.awt.Graphics#fillRoundRect */ public void drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight) { RoundRectangle2D rect = new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight); draw(rect); } /** * Fills the specified rounded corner rectangle with the current color. The * left and right edges of the rectangle are at <code>x</code> and * <code>x + width - 1</code>, respectively. The top * and bottom edges of the rectangle are at <code>y</code> and * <code>y + height - 1</code>. * * @param x * the <i>x</i> coordinate of the rectangle to be filled. * @param y * the <i>y</i> coordinate of the rectangle to be filled. * @param width * the width of the rectangle to be filled. * @param height * the height of the rectangle to be filled. * @param arcWidth * the horizontal diameter of the arc at the four corners. * @param arcHeight * the vertical diameter of the arc at the four corners. * @see java.awt.Graphics#drawRoundRect */ public void fillRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight) { RoundRectangle2D rect = new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight); fill(rect); } /** * Draws the outline of an oval. The result is a circle or ellipse that fits * within the rectangle specified by the <code>x</code>, <code>y</code>, * <code>width</code>, and <code>height</code> arguments. * <p> * The oval covers an area that is <code>width + 1</code> pixels * wide and <code>height + 1</code> pixels tall. * * @param x * the <i>x</i> coordinate of the upper left corner of the oval to * be drawn. * @param y * the <i>y</i> coordinate of the upper left corner of the oval to * be drawn. * @param width * the width of the oval to be drawn. * @param height * the height of the oval to be drawn. * @see java.awt.Graphics#fillOval */ public void drawOval(int x, int y, int width, int height) { Ellipse2D oval = new Ellipse2D.Float(x, y, width, height); draw(oval); } /** * Fills an oval bounded by the specified rectangle with the current color. * * @param x * the <i>x</i> coordinate of the upper left corner of the oval to * be filled. * @param y * the <i>y</i> coordinate of the upper left corner of the oval to * be filled. * @param width * the width of the oval to be filled. * @param height * the height of the oval to be filled. * @see java.awt.Graphics#drawOval */ public void fillOval(int x, int y, int width, int height) { Ellipse2D oval = new Ellipse2D.Float(x, y, width, height); fill(oval); } /** * Draws the outline of a circular or elliptical arc covering the specified * rectangle. * <p> * The resulting arc begins at <code>startAngle</code> and extends for * <code>arcAngle</code> degrees, using the current color. Angles are * interpreted such that 0 degrees is at the 3 o'clock position. A * positive value indicates a counter-clockwise rotation while a negative * value indicates a clockwise rotation. * <p> * The center of the arc is the center of the rectangle whose origin is (<i>x</i>, <i>y</i>) * and whose size is specified by the <code>width</code> and * <code>height</code> arguments. * <p> * The resulting arc covers an area <code>width + 1</code> pixels * wide by <code>height + 1</code> pixels tall. * <p> * The angles are specified relative to the non-square extents of the bounding * rectangle such that 45 degrees always falls on the line from the center of * the ellipse to the upper right corner of the bounding rectangle. As a * result, if the bounding rectangle is noticeably longer in one axis than the * other, the angles to the start and end of the arc segment will be skewed * farther along the longer axis of the bounds. * * @param x * the <i>x</i> coordinate of the upper-left corner of the arc to be * drawn. * @param y * the <i>y</i> coordinate of the upper-left corner of the arc to be * drawn. * @param width * the width of the arc to be drawn. * @param height * the height of the arc to be drawn. * @param startAngle * the beginning angle. * @param arcAngle * the angular extent of the arc, relative to the start angle. * @see java.awt.Graphics#fillArc */ public void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle) { Arc2D arc = new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.OPEN); draw(arc); } /** * Fills a circular or elliptical arc covering the specified rectangle. * <p> * The resulting arc begins at <code>startAngle</code> and extends for * <code>arcAngle</code> degrees. Angles are interpreted such that * 0 degrees is at the 3 o'clock position. A positive value * indicates a counter-clockwise rotation while a negative value indicates a * clockwise rotation. * <p> * The center of the arc is the center of the rectangle whose origin is (<i>x</i>, <i>y</i>) * and whose size is specified by the <code>width</code> and * <code>height</code> arguments. * <p> * The resulting arc covers an area <code>width + 1</code> pixels * wide by <code>height + 1</code> pixels tall. * <p> * The angles are specified relative to the non-square extents of the bounding * rectangle such that 45 degrees always falls on the line from the center of * the ellipse to the upper right corner of the bounding rectangle. As a * result, if the bounding rectangle is noticeably longer in one axis than the * other, the angles to the start and end of the arc segment will be skewed * farther along the longer axis of the bounds. * * @param x * the <i>x</i> coordinate of the upper-left corner of the arc to be * filled. * @param y * the <i>y</i> coordinate of the upper-left corner of the arc to be * filled. * @param width * the width of the arc to be filled. * @param height * the height of the arc to be filled. * @param startAngle * the beginning angle. * @param arcAngle * the angular extent of the arc, relative to the start angle. * @see java.awt.Graphics#drawArc */ public void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle) { Arc2D arc = new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.PIE); fill(arc); } /** * Draws a sequence of connected lines defined by arrays of <i>x</i> and <i>y</i> * coordinates. Each pair of (<i>x</i>, <i>y</i>) coordinates defines * a point. The figure is not closed if the first point differs from the last * point. * * @param xPoints * an array of <i>x</i> points * @param yPoints * an array of <i>y</i> points * @param nPoints * the total number of points * @see java.awt.Graphics#drawPolygon(int[], int[], int) * @since JDK1.1 */ public void drawPolyline(int[] xPoints, int[] yPoints, int nPoints) { if (nPoints > 0) { GeneralPath path = new GeneralPath(); path.moveTo(xPoints[0], yPoints[0]); for (int i = 1; i < nPoints; i++) path.lineTo(xPoints[i], yPoints[i]); draw(path); } } /** * Draws a closed polygon defined by arrays of <i>x</i> and <i>y</i> * coordinates. Each pair of (<i>x</i>, <i>y</i>) coordinates defines * a point. * <p> * This method draws the polygon defined by <code>nPoint</code> line * segments, where the first <code>nPoint - 1</code> line segments * are line segments from * <code>(xPoints[i - 1], yPoints[i - 1])</code> to * <code>(xPoints[i], yPoints[i])</code>, for 1 ≤ <i>i</i> ≤ <code>nPoints</code>. * The figure is automatically closed by drawing a line connecting the final * point to the first point, if those points are different. * * @param xPoints * a an array of <code>x</code> coordinates. * @param yPoints * a an array of <code>y</code> coordinates. * @param nPoints * a the total number of points. * @see java.awt.Graphics#fillPolygon(int[],int[],int) * @see java.awt.Graphics#drawPolyline */ public void drawPolygon(int[] xPoints, int[] yPoints, int nPoints) { Polygon polygon = new Polygon(xPoints, yPoints, nPoints); draw(polygon); } /** * Fills a closed polygon defined by arrays of <i>x</i> and <i>y</i> * coordinates. * <p> * This method draws the polygon defined by <code>nPoint</code> line * segments, where the first <code>nPoint - 1</code> line segments * are line segments from * <code>(xPoints[i - 1], yPoints[i - 1])</code> to * <code>(xPoints[i], yPoints[i])</code>, for 1 ≤ <i>i</i> ≤ <code>nPoints</code>. * The figure is automatically closed by drawing a line connecting the final * point to the first point, if those points are different. * <p> * The area inside the polygon is defined using an even-odd fill rule, also * known as the alternating rule. * * @param xPoints * a an array of <code>x</code> coordinates. * @param yPoints * a an array of <code>y</code> coordinates. * @param nPoints * a the total number of points. * @see java.awt.Graphics#drawPolygon(int[], int[], int) */ public void fillPolygon(int[] xPoints, int[] yPoints, int nPoints) { Polygon polygon = new Polygon(xPoints, yPoints, nPoints); fill(polygon); } /** * Draws the text given by the specified string, using this graphics context's * current font and color. The baseline of the first character is at position (<i>x</i>, <i>y</i>) * in this graphics context's coordinate system. * * @param str * the string to be drawn. * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @see java.awt.Graphics#drawBytes * @see java.awt.Graphics#drawChars */ public void drawString(String str, int x, int y) { drawString(str, (float) x, (float) y); } /** * Draws the text given by the specified iterator, using this graphics * context's current color. The iterator has to specify a font for each * character. The baseline of the first character is at position (<i>x</i>, <i>y</i>) * in this graphics context's coordinate system. * * @param iterator * the iterator whose text is to be drawn * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @see java.awt.Graphics#drawBytes * @see java.awt.Graphics#drawChars */ public void drawString(AttributedCharacterIterator iterator, int x, int y) { drawString(iterator, (float) x, (float) y); } /** * Draws as much of the specified image as is currently available. The image * is drawn with its top-left corner at (<i>x</i>, <i>y</i>) in this * graphics context's coordinate space. Transparent pixels are drawn in the * specified background color. * <p> * This operation is equivalent to filling a rectangle of the width and height * of the specified image with the given color and then drawing the image on * top of it, but possibly more efficient. * <p> * This method returns immediately in all cases, even if the complete image * has not yet been loaded, and it has not been dithered and converted for the * current output device. * <p> * If the image has not yet been completely loaded, then * <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * specified image observer. * * @param img * the specified image to be drawn. * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @param bgcolor * the background color to paint under the non-opaque portions of the * image. * @param observer * object to be notified as more of the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) */ public boolean drawImage(Image img, int x, int y, Color bgcolor, ImageObserver observer) { return drawImage(img, x, y, img.getWidth(null), img.getHeight(null), bgcolor, observer); } /** * Draws as much of the specified image as has already been scaled to fit * inside the specified rectangle. * <p> * The image is drawn inside the specified rectangle of this graphics * context's coordinate space, and is scaled if necessary. Transparent pixels * are drawn in the specified background color. This operation is equivalent * to filling a rectangle of the width and height of the specified image with * the given color and then drawing the image on top of it, but possibly more * efficient. * <p> * This method returns immediately in all cases, even if the entire image has * not yet been scaled, dithered, and converted for the current output device. * If the current output representation is not yet complete then * <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * specified image observer. * <p> * A scaled version of an image will not necessarily be available immediately * just because an unscaled version of the image has been constructed for this * output device. Each size of the image may be cached separately and * generated from the original data in a separate image production sequence. * * @param img * the specified image to be drawn. * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. * @param width * the width of the rectangle. * @param height * the height of the rectangle. * @param bgcolor * the background color to paint under the non-opaque portions of the * image. * @param observer * object to be notified as more of the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) */ public boolean drawImage(Image img, int x, int y, int width, int height, Color bgcolor, ImageObserver observer) { Paint paint = gc.getPaint(); gc.setPaint(bgcolor); fillRect(x, y, width, height); gc.setPaint(paint); drawImage(img, x, y, width, height, observer); return true; } /** * Draws as much of the specified area of the specified image as is currently * available, scaling it on the fly to fit inside the specified area of the * destination drawable surface. Transparent pixels do not affect whatever * pixels are already there. * <p> * This method returns immediately in all cases, even if the image area to be * drawn has not yet been scaled, dithered, and converted for the current * output device. If the current output representation is not yet complete * then <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * specified image observer. * <p> * This method always uses the unscaled version of the image to render the * scaled rectangle and performs the required scaling on the fly. It does not * use a cached, scaled version of the image for this operation. Scaling of * the image from source to destination is performed such that the first * coordinate of the source rectangle is mapped to the first coordinate of the * destination rectangle, and the second source coordinate is mapped to the * second destination coordinate. The subimage is scaled and flipped as needed * to preserve those mappings. * * @param img * the specified image to be drawn * @param dx1 * the <i>x</i> coordinate of the first corner of the destination * rectangle. * @param dy1 * the <i>y</i> coordinate of the first corner of the destination * rectangle. * @param dx2 * the <i>x</i> coordinate of the second corner of the destination * rectangle. * @param dy2 * the <i>y</i> coordinate of the second corner of the destination * rectangle. * @param sx1 * the <i>x</i> coordinate of the first corner of the source * rectangle. * @param sy1 * the <i>y</i> coordinate of the first corner of the source * rectangle. * @param sx2 * the <i>x</i> coordinate of the second corner of the source * rectangle. * @param sy2 * the <i>y</i> coordinate of the second corner of the source * rectangle. * @param observer * object to be notified as more of the image is scaled and * converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) * @since JDK1.1 */ public boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, ImageObserver observer) { BufferedImage src = new BufferedImage(img.getWidth(null), img.getHeight(null), BufferedImage.TYPE_INT_ARGB); Graphics2D g = src.createGraphics(); g.drawImage(img, 0, 0, null); g.dispose(); src = src.getSubimage(sx1, sy1, sx2 - sx1, sy2 - sy1); return drawImage(src, dx1, dy1, dx2 - dx1, dy2 - dy1, observer); } /** * Draws as much of the specified area of the specified image as is currently * available, scaling it on the fly to fit inside the specified area of the * destination drawable surface. * <p> * Transparent pixels are drawn in the specified background color. This * operation is equivalent to filling a rectangle of the width and height of * the specified image with the given color and then drawing the image on top * of it, but possibly more efficient. * <p> * This method returns immediately in all cases, even if the image area to be * drawn has not yet been scaled, dithered, and converted for the current * output device. If the current output representation is not yet complete * then <code>drawImage</code> returns <code>false</code>. As more of the * image becomes available, the process that draws the image notifies the * specified image observer. * <p> * This method always uses the unscaled version of the image to render the * scaled rectangle and performs the required scaling on the fly. It does not * use a cached, scaled version of the image for this operation. Scaling of * the image from source to destination is performed such that the first * coordinate of the source rectangle is mapped to the first coordinate of the * destination rectangle, and the second source coordinate is mapped to the * second destination coordinate. The subimage is scaled and flipped as needed * to preserve those mappings. * * @param img * the specified image to be drawn * @param dx1 * the <i>x</i> coordinate of the first corner of the destination * rectangle. * @param dy1 * the <i>y</i> coordinate of the first corner of the destination * rectangle. * @param dx2 * the <i>x</i> coordinate of the second corner of the destination * rectangle. * @param dy2 * the <i>y</i> coordinate of the second corner of the destination * rectangle. * @param sx1 * the <i>x</i> coordinate of the first corner of the source * rectangle. * @param sy1 * the <i>y</i> coordinate of the first corner of the source * rectangle. * @param sx2 * the <i>x</i> coordinate of the second corner of the source * rectangle. * @param sy2 * the <i>y</i> coordinate of the second corner of the source * rectangle. * @param bgcolor * the background color to paint under the non-opaque portions of the * image. * @param observer * object to be notified as more of the image is scaled and * converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, * int, int, int) * @since JDK1.1 */ public boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, Color bgcolor, ImageObserver observer) { Paint paint = gc.getPaint(); gc.setPaint(bgcolor); fillRect(dx1, dy1, dx2 - dx1, dy2 - dy1); gc.setPaint(paint); return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, observer); } /** * Renders an image, applying a transform from image space into user space * before drawing. The transformation from user space into device space is * done with the current <code>Transform</code> in the * <code>Graphics2D</code>. The specified transformation is applied to the * image before the transform attribute in the <code>Graphics2D</code> * context is applied. The rendering attributes applied include the * <code>Clip</code>, <code>Transform</code>, and <code>Composite</code> * attributes. Note that no rendering is done if the specified transform is * noninvertible. * * @param img * the <code>Image</code> to be rendered * @param xform * the transformation from image space into user space * @param obs * the {@link ImageObserver} to be notified as more of the * <code>Image</code> is converted * @return <code>true</code> if the <code>Image</code> is fully loaded and * completely rendered; <code>false</code> if the <code>Image</code> * is still being loaded. * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip(Shape) */ public boolean drawImage(Image img, AffineTransform xform, ImageObserver obs) { boolean retVal = true; if (xform.getDeterminant() != 0) { AffineTransform inverseTransform = null; try { inverseTransform = xform.createInverse(); } catch (NoninvertibleTransformException e) { // Should never happen since we checked the // matrix determinant throw new Error(e.getMessage()); } gc.transform(xform); retVal = drawImage(img, 0, 0, null); gc.transform(inverseTransform); } else { AffineTransform savTransform = new AffineTransform(gc.getTransform()); gc.transform(xform); retVal = drawImage(img, 0, 0, null); gc.setTransform(savTransform); } return retVal; } /** * Renders a <code>BufferedImage</code> that is filtered with a * {@link BufferedImageOp}. The rendering attributes applied include the * <code>Clip</code>, <code>Transform</code> and <code>Composite</code> * attributes. This is equivalent to: * * <pre> * img1 = op.filter(img, null); * drawImage(img1, new AffineTransform(1f, 0f, 0f, 1f, x, y), null); * </pre> * * @param img * the <code>BufferedImage</code> to be rendered * @param op * the filter to be applied to the image before rendering * @param x * the x coordinate in user space where the image is rendered * @param y * the y coordinate in user space where the image is rendered * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip(Shape) */ public void drawImage(BufferedImage img, BufferedImageOp op, int x, int y) { img = op.filter(img, null); drawImage(img, x, y, null); } /** * Renders the text of the specified {@link GlyphVector} using the * <code>Graphics2D</code> context's rendering attributes. The rendering * attributes applied include the <code>Clip</code>, <code>Transform</code>, * <code>Paint</code>, and <code>Composite</code> attributes. The * <code>GlyphVector</code> specifies individual glyphs from a {@link Font}. * The <code>GlyphVector</code> can also contain the glyph positions. This * is the fastest way to render a set of characters to the screen. * * @param g * the <code>GlyphVector</code> to be rendered * @param x * the x position in user space where the glyphs should be rendered * @param y * the y position in user space where the glyphs should be rendered * * @see java.awt.Font#createGlyphVector(FontRenderContext, char[]) * @see java.awt.font.GlyphVector * @see #setPaint * @see java.awt.Graphics#setColor * @see #setTransform * @see #setComposite * @see #setClip(Shape) */ public void drawGlyphVector(GlyphVector g, float x, float y) { Shape glyphOutline = g.getOutline(x, y); fill(glyphOutline); } /** * Checks whether or not the specified <code>Shape</code> intersects the * specified {@link Rectangle}, which is in device space. If * <code>onStroke</code> is false, this method checks whether or not the * interior of the specified <code>Shape</code> intersects the specified * <code>Rectangle</code>. If <code>onStroke</code> is <code>true</code>, * this method checks whether or not the <code>Stroke</code> of the * specified <code>Shape</code> outline intersects the specified * <code>Rectangle</code>. The rendering attributes taken into account * include the <code>Clip</code>, <code>Transform</code>, and * <code>Stroke</code> attributes. * * @param rect * the area in device space to check for a hit * @param s * the <code>Shape</code> to check for a hit * @param onStroke * flag used to choose between testing the stroked or the filled * shape. If the flag is <code>true</code>, the * <code>Stroke</code> oultine is tested. If the flag is * <code>false</code>, the filled <code>Shape</code> is tested. * @return <code>true</code> if there is a hit; <code>false</code> * otherwise. * @see #setStroke * @see #fill(Shape) * @see #draw(Shape) * @see #transform * @see #setTransform * @see #clip * @see #setClip(Shape) */ public boolean hit(Rectangle rect, Shape s, boolean onStroke) { if (onStroke) { s = gc.getStroke().createStrokedShape(s); } s = gc.getTransform().createTransformedShape(s); return s.intersects(rect); } /** * Sets the <code>Composite</code> for the <code>Graphics2D</code> * context. The <code>Composite</code> is used in all drawing methods such * as <code>drawImage</code>, <code>drawString</code>, <code>draw</code>, * and <code>fill</code>. It specifies how new pixels are to be combined * with the existing pixels on the graphics device during the rendering * process. * <p> * If this <code>Graphics2D</code> context is drawing to a * <code>Component</code> on the display screen and the * <code>Composite</code> is a custom object rather than an instance of the * <code>AlphaComposite</code> class, and if there is a security manager, * its <code>checkPermission</code> method is called with an * <code>AWTPermission("readDisplayPixels")</code> permission. * * @param comp * the <code>Composite</code> object to be used for rendering * @throws SecurityException * if a custom <code>Composite</code> object is being used to * render to the screen and a security manager is set and its * <code>checkPermission</code> method does not allow the * operation. * @see java.awt.Graphics#setXORMode * @see java.awt.Graphics#setPaintMode * @see java.awt.AlphaComposite */ public void setComposite(Composite comp) { gc.setComposite(comp); } /** * Sets the <code>Paint</code> attribute for the <code>Graphics2D</code> * context. Calling this method with a <code>null</code> <code>Paint</code> * object does not have any effect on the current <code>Paint</code> * attribute of this <code>Graphics2D</code>. * * @param paint * the <code>Paint</code> object to be used to generate color * during the rendering process, or <code>null</code> * @see java.awt.Graphics#setColor */ public void setPaint(Paint paint) { gc.setPaint(paint); } /** * Sets the <code>Stroke</code> for the <code>Graphics2D</code> context. * * @param s * the <code>Stroke</code> object to be used to stroke a * <code>Shape</code> during the rendering process */ public void setStroke(Stroke s) { gc.setStroke(s); } /** * Sets the value of a single preference for the rendering algorithms. Hint * categories include controls for rendering quality and overall time/quality * trade-off in the rendering process. Refer to the * <code>RenderingHints</code> class for definitions of some common keys and * values. * * @param hintKey * the key of the hint to be set. * @param hintValue * the value indicating preferences for the specified hint category. * @see RenderingHints */ public void setRenderingHint(RenderingHints.Key hintKey, Object hintValue) { gc.setRenderingHint(hintKey, hintValue); } /** * Returns the value of a single preference for the rendering algorithms. Hint * categories include controls for rendering quality and overall time/quality * trade-off in the rendering process. Refer to the * <code>RenderingHints</code> class for definitions of some common keys and * values. * * @param hintKey * the key corresponding to the hint to get. * @return an object representing the value for the specified hint key. Some * of the keys and their associated values are defined in the * <code>RenderingHints</code> class. * @see RenderingHints */ public Object getRenderingHint(RenderingHints.Key hintKey) { return gc.getRenderingHint(hintKey); } /** * Replaces the values of all preferences for the rendering algorithms with * the specified <code>hints</code>. The existing values for all rendering * hints are discarded and the new set of known hints and values are * initialized from the specified {@link Map} object. Hint categories include * controls for rendering quality and overall time/quality trade-off in the * rendering process. Refer to the <code>RenderingHints</code> class for * definitions of some common keys and values. * * @param hints * the rendering hints to be set * @see RenderingHints */ public void setRenderingHints(Map hints) { gc.setRenderingHints(hints); } /** * Sets the values of an arbitrary number of preferences for the rendering * algorithms. Only values for the rendering hints that are present in the * specified <code>Map</code> object are modified. All other preferences not * present in the specified object are left unmodified. Hint categories * include controls for rendering quality and overall time/quality trade-off * in the rendering process. Refer to the <code>RenderingHints</code> class * for definitions of some common keys and values. * * @param hints * the rendering hints to be set * @see RenderingHints */ public void addRenderingHints(Map hints) { gc.addRenderingHints(hints); } /** * Gets the preferences for the rendering algorithms. Hint categories include * controls for rendering quality and overall time/quality trade-off in the * rendering process. Returns all of the hint key/value pairs that were ever * specified in one operation. Refer to the <code>RenderingHints</code> * class for definitions of some common keys and values. * * @return a reference to an instance of <code>RenderingHints</code> that * contains the current preferences. * @see RenderingHints */ public RenderingHints getRenderingHints() { return gc.getRenderingHints(); } /** * Concatenates the current <code>Graphics2D</code> <code>Transform</code> * with a translation transform. Subsequent rendering is translated by the * specified distance relative to the previous position. This is equivalent to * calling transform(T), where T is an <code>AffineTransform</code> * represented by the following matrix: * * <pre> * [ 1 0 tx ] * [ 0 1 ty ] * [ 0 0 1 ] * </pre> * * @param tx * the distance to translate along the x-axis * @param ty * the distance to translate along the y-axis */ public void translate(double tx, double ty) { gc.translate(tx, ty); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a rotation transform. Subsequent rendering is rotated by the specified * radians relative to the previous origin. This is equivalent to calling * <code>transform(R)</code>, where R is an <code>AffineTransform</code> * represented by the following matrix: * * <pre> * [ cos(theta) -sin(theta) 0 ] * [ sin(theta) cos(theta) 0 ] * [ 0 0 1 ] * </pre> * * Rotating with a positive angle theta rotates points on the positive x axis * toward the positive y axis. * * @param theta * the angle of rotation in radians */ public void rotate(double theta) { gc.rotate(theta); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a translated rotation transform. Subsequent rendering is transformed * by a transform which is constructed by translating to the specified * location, rotating by the specified radians, and translating back by the * same amount as the original translation. This is equivalent to the * following sequence of calls: * * <pre> * translate(x, y); * rotate(theta); * translate(-x, -y); * </pre> * * Rotating with a positive angle theta rotates points on the positive x axis * toward the positive y axis. * * @param theta * the angle of rotation in radians * @param x * the x coordinate of the origin of the rotation * @param y * the y coordinate of the origin of the rotation */ public void rotate(double theta, double x, double y) { gc.rotate(theta, x, y); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a scaling transformation Subsequent rendering is resized according to * the specified scaling factors relative to the previous scaling. This is * equivalent to calling <code>transform(S)</code>, where S is an * <code>AffineTransform</code> represented by the following matrix: * * <pre> * [ sx 0 0 ] * [ 0 sy 0 ] * [ 0 0 1 ] * </pre> * * @param sx * the amount by which X coordinates in subsequent rendering * operations are multiplied relative to previous rendering * operations. * @param sy * the amount by which Y coordinates in subsequent rendering * operations are multiplied relative to previous rendering * operations. */ public void scale(double sx, double sy) { gc.scale(sx, sy); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a shearing transform. Subsequent renderings are sheared by the * specified multiplier relative to the previous position. This is equivalent * to calling <code>transform(SH)</code>, where SH is an * <code>AffineTransform</code> represented by the following matrix: * * <pre> * [ 1 shx 0 ] * [ shy 1 0 ] * [ 0 0 1 ] * </pre> * * @param shx * the multiplier by which coordinates are shifted in the positive X * axis direction as a function of their Y coordinate * @param shy * the multiplier by which coordinates are shifted in the positive Y * axis direction as a function of their X coordinate */ public void shear(double shx, double shy) { gc.shear(shx, shy); } /** * Composes an <code>AffineTransform</code> object with the * <code>Transform</code> in this <code>Graphics2D</code> according to the * rule last-specified-first-applied. If the current <code>Transform</code> * is Cx, the result of composition with Tx is a new <code>Transform</code> * Cx'. Cx' becomes the current <code>Transform</code> for this * <code>Graphics2D</code>. Transforming a point p by the updated * <code>Transform</code> Cx' is equivalent to first transforming p by Tx * and then transforming the result by the original <code>Transform</code> * Cx. In other words, Cx'(p) = Cx(Tx(p)). A copy of the Tx is made, if * necessary, so further modifications to Tx do not affect rendering. * * @param Tx * the <code>AffineTransform</code> object to be composed with the * current <code>Transform</code> * @see #setTransform * @see AffineTransform */ public void transform(AffineTransform Tx) { gc.transform(Tx); } /** * Sets the <code>Transform</code> in the <code>Graphics2D</code> context. * * @param Tx * the <code>AffineTransform</code> object to be used in the * rendering process * @see #transform * @see AffineTransform */ public void setTransform(AffineTransform Tx) { gc.setTransform(Tx); } /** * Returns a copy of the current <code>Transform</code> in the * <code>Graphics2D</code> context. * * @return the current <code>AffineTransform</code> in the * <code>Graphics2D</code> context. * @see #transform * @see #setTransform */ public AffineTransform getTransform() { return gc.getTransform(); } /** * Returns the current <code>Paint</code> of the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Paint</code>, which * defines a color or pattern. * @see #setPaint * @see java.awt.Graphics#setColor */ public Paint getPaint() { return gc.getPaint(); } /** * Returns the current <code>Composite</code> in the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Composite</code>, * which defines a compositing style. * @see #setComposite */ public Composite getComposite() { return gc.getComposite(); } /** * Sets the background color for the <code>Graphics2D</code> context. The * background color is used for clearing a region. When a * <code>Graphics2D</code> is constructed for a <code>Component</code>, * the background color is inherited from the <code>Component</code>. * Setting the background color in the <code>Graphics2D</code> context only * affects the subsequent <code>clearRect</code> calls and not the * background color of the <code>Component</code>. To change the background * of the <code>Component</code>, use appropriate methods of the * <code>Component</code>. * * @param color * the background color that isused in subsequent calls to * <code>clearRect</code> * @see #getBackground * @see java.awt.Graphics#clearRect */ public void setBackground(Color color) { gc.setBackground(color); } /** * Returns the background color used for clearing a region. * * @return the current <code>Graphics2D</code> <code>Color</code>, which * defines the background color. * @see #setBackground */ public Color getBackground() { return gc.getBackground(); } /** * Returns the current <code>Stroke</code> in the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Stroke</code>, which * defines the line style. * @see #setStroke */ public Stroke getStroke() { return gc.getStroke(); } /** * Intersects the current <code>Clip</code> with the interior of the * specified <code>Shape</code> and sets the <code>Clip</code> to the * resulting intersection. The specified <code>Shape</code> is transformed * with the current <code>Graphics2D</code> * <code>Transform</code> before * being intersected with the current <code>Clip</code>. This method is * used to make the current <code>Clip</code> smaller. To make the * <code>Clip</code> larger, use <code>setClip</code>. The <i>user clip</i> * modified by this method is independent of the clipping associated with * device bounds and visibility. If no clip has previously been set, or if the * clip has been cleared using * {@link java.awt.Graphics#setClip(Shape) setClip} with a <code>null</code> * argument, the specified <code>Shape</code> becomes the new user clip. * * @param s * the <code>Shape</code> to be intersected with the current * <code>Clip</code>. If <code>s</code> is <code>null</code>, * this method clears the current <code>Clip</code>. */ public void clip(Shape s) { gc.clip(s); } /** * Get the rendering context of the <code>Font</code> within this * <code>Graphics2D</code> context. The {@link FontRenderContext} * encapsulates application hints such as anti-aliasing and fractional * metrics, as well as target device specific information such as * dots-per-inch. This information should be provided by the application when * using objects that perform typographical formatting, such as * <code>Font</code> and <code>TextLayout</code>. This information should * also be provided by applications that perform their own layout and need * accurate measurements of various characteristics of glyphs such as advance * and line height when various rendering hints have been applied to the text * rendering. * * @return a reference to an instance of FontRenderContext. * @see java.awt.font.FontRenderContext * @see java.awt.Font#createGlyphVector(FontRenderContext,char[]) * @see java.awt.font.TextLayout * @since JDK1.2 */ public FontRenderContext getFontRenderContext() { return gc.getFontRenderContext(); } /** * @return the {@link GraphicContext} of this <code>Graphics2D</code>. */ public GraphicContext getGraphicContext() { return gc; } } /* * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * */ /** * Handles the attributes in a graphic context:<br> + Composite <br> + Font * <br> + Paint <br> + Stroke <br> + Clip <br> + RenderingHints <br> + * AffineTransform <br> * * @author <a href="mailto:cjolif@ilog.fr">Christophe Jolif</a> * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a> * @version $Id: GraphicContext.java 479564 2006-11-27 09:56:57Z dvholten $ */ class GraphicContext implements Cloneable { /** * Default Transform to be used for creating FontRenderContext. */ protected AffineTransform defaultTransform = new AffineTransform(); /** * Current AffineTransform. This is the concatenation of the original * AffineTransform (i.e., last setTransform invocation) and the following * transform invocations, as captured by originalTransform and the * transformStack. */ protected AffineTransform transform = new AffineTransform(); /** * Transform stack */ protected List transformStack = new ArrayList(); /** * Defines whether the transform stack is valide or not. This is for use by * the class clients. The client should validate the stack every time it * starts using it. The stack becomes invalid when a new transform is set. * * @see #invalidateTransformStack() * @see #isTransformStackValid * @see #setTransform */ protected boolean transformStackValid = true; /** * Current Paint */ protected Paint paint = Color.black; /** * Current Stroke */ protected Stroke stroke = new BasicStroke(); /** * Current Composite */ protected Composite composite = AlphaComposite.SrcOver; /** * Current clip */ protected Shape clip = null; /** * Current set of RenderingHints */ protected RenderingHints hints = new RenderingHints(null); /** * Current Font */ protected Font font = new Font("sanserif", Font.PLAIN, 12); /** * Current background color. */ protected Color background = new Color(0, 0, 0, 0); /** * Current foreground color */ protected Color foreground = Color.black; /** * Default constructor */ public GraphicContext() { // to workaround a JDK bug hints.put(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_DEFAULT); } /** * @param defaultDeviceTransform * Default affine transform applied to map the user space to the user * space. */ public GraphicContext(AffineTransform defaultDeviceTransform) { this(); defaultTransform = new AffineTransform(defaultDeviceTransform); transform = new AffineTransform(defaultTransform); if (!defaultTransform.isIdentity()) transformStack.add(TransformStackElement.createGeneralTransformElement(defaultTransform)); } /** * @return a deep copy of this context */ public Object clone() { GraphicContext copyGc = new GraphicContext(defaultTransform); // // Now, copy each GC element in turn // // Default transform /* Set in constructor */ // Transform copyGc.transform = new AffineTransform(this.transform); // Transform stack copyGc.transformStack = new ArrayList(transformStack.size()); for (int i = 0; i < this.transformStack.size(); i++) { TransformStackElement stackElement = (TransformStackElement) this.transformStack.get(i); copyGc.transformStack.add(stackElement.clone()); } // Transform stack validity copyGc.transformStackValid = this.transformStackValid; // Paint (immutable by requirement) copyGc.paint = this.paint; // Stroke (immutable by requirement) copyGc.stroke = this.stroke; // Composite (immutable by requirement) copyGc.composite = this.composite; // Clip if (clip != null) copyGc.clip = new GeneralPath(clip); else copyGc.clip = null; // RenderingHints copyGc.hints = (RenderingHints) this.hints.clone(); // Font (immutable) copyGc.font = this.font; // Background, Foreground (immutable) copyGc.background = this.background; copyGc.foreground = this.foreground; return copyGc; } /** * Gets this graphics context's current color. * * @return this graphics context's current color. * @see java.awt.Color * @see java.awt.Graphics#setColor */ public Color getColor() { return foreground; } /** * Sets this graphics context's current color to the specified color. All * subsequent graphics operations using this graphics context use this * specified color. * * @param c * the new rendering color. * @see java.awt.Color * @see java.awt.Graphics#getColor */ public void setColor(Color c) { if (c == null) return; if (paint != c) setPaint(c); } /** * Gets the current font. * * @return this graphics context's current font. * @see java.awt.Font * @see java.awt.Graphics#setFont */ public Font getFont() { return font; } /** * Sets this graphics context's font to the specified font. All subsequent * text operations using this graphics context use this font. * * @param font * the font. * @see java.awt.Graphics#getFont */ public void setFont(Font font) { if (font != null) this.font = font; } /** * Returns the bounding rectangle of the current clipping area. This method * refers to the user clip, which is independent of the clipping associated * with device bounds and window visibility. If no clip has previously been * set, or if the clip has been cleared using <code>setClip(null)</code>, * this method returns <code>null</code>. The coordinates in the rectangle * are relative to the coordinate system origin of this graphics context. * * @return the bounding rectangle of the current clipping area, or * <code>null</code> if no clip is set. * @see java.awt.Graphics#getClip * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(int, int, int, int) * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public Rectangle getClipBounds() { Shape c = getClip(); if (c == null) return null; else return c.getBounds(); } /** * Intersects the current clip with the specified rectangle. The resulting * clipping area is the intersection of the current clipping area and the * specified rectangle. If there is no current clipping area, either because * the clip has never been set, or the clip has been cleared using * <code>setClip(null)</code>, the specified rectangle becomes the new * clip. This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. This method can only * be used to make the current clip smaller. To set the current clip larger, * use any of the setClip methods. Rendering operations have no effect outside * of the clipping area. * * @param x * the x coordinate of the rectangle to intersect the clip with * @param y * the y coordinate of the rectangle to intersect the clip with * @param width * the width of the rectangle to intersect the clip with * @param height * the height of the rectangle to intersect the clip with * @see #setClip(int, int, int, int) * @see #setClip(Shape) */ public void clipRect(int x, int y, int width, int height) { clip(new Rectangle(x, y, width, height)); } /** * Sets the current clip to the rectangle specified by the given coordinates. * This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. Rendering operations * have no effect outside of the clipping area. * * @param x * the <i>x</i> coordinate of the new clip rectangle. * @param y * the <i>y</i> coordinate of the new clip rectangle. * @param width * the width of the new clip rectangle. * @param height * the height of the new clip rectangle. * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public void setClip(int x, int y, int width, int height) { setClip(new Rectangle(x, y, width, height)); } /** * Gets the current clipping area. This method returns the user clip, which is * independent of the clipping associated with device bounds and window * visibility. If no clip has previously been set, or if the clip has been * cleared using <code>setClip(null)</code>, this method returns * <code>null</code>. * * @return a <code>Shape</code> object representing the current clipping * area, or <code>null</code> if no clip is set. * @see java.awt.Graphics#getClipBounds() * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(int, int, int, int) * @see java.awt.Graphics#setClip(Shape) * @since JDK1.1 */ public Shape getClip() { try { return transform.createInverse().createTransformedShape(clip); } catch (NoninvertibleTransformException e) { return null; } } /** * Sets the current clipping area to an arbitrary clip shape. Not all objects * that implement the <code>Shape</code> interface can be used to set the * clip. The only <code>Shape</code> objects that are guaranteed to be * supported are <code>Shape</code> objects that are obtained via the * <code>getClip</code> method and via <code>Rectangle</code> objects. * This method sets the user clip, which is independent of the clipping * associated with device bounds and window visibility. * * @param clip * the <code>Shape</code> to use to set the clip * @see java.awt.Graphics#getClip() * @see java.awt.Graphics#clipRect * @see java.awt.Graphics#setClip(int, int, int, int) * @since JDK1.1 */ public void setClip(Shape clip) { if (clip != null) this.clip = transform.createTransformedShape(clip); else this.clip = null; } /** * Sets the <code>Composite</code> for the <code>Graphics2D</code> * context. The <code>Composite</code> is used in all drawing methods such * as <code>drawImage</code>, <code>drawString</code>, <code>draw</code>, * and <code>fill</code>. It specifies how new pixels are to be combined * with the existing pixels on the graphics device during the rendering * process. * <p> * If this <code>Graphics2D</code> context is drawing to a * <code>Component</code> on the display screen and the * <code>Composite</code> is a custom object rather than an instance of the * <code>AlphaComposite</code> class, and if there is a security manager, * its <code>checkPermission</code> method is called with an * <code>AWTPermission("readDisplayPixels")</code> permission. * * @param comp * the <code>Composite</code> object to be used for rendering * @throws SecurityException * if a custom <code>Composite</code> object is being used to * render to the screen and a security manager is set and its * <code>checkPermission</code> method does not allow the * operation. * @see java.awt.Graphics#setXORMode * @see java.awt.Graphics#setPaintMode * @see java.awt.AlphaComposite */ public void setComposite(Composite comp) { this.composite = comp; } /** * Sets the <code>Paint</code> attribute for the <code>Graphics2D</code> * context. Calling this method with a <code>null</code> <code>Paint</code> * object does not have any effect on the current <code>Paint</code> * attribute of this <code>Graphics2D</code>. * * @param paint * the <code>Paint</code> object to be used to generate color * during the rendering process, or <code>null</code> * @see java.awt.Graphics#setColor * @see java.awt.GradientPaint * @see java.awt.TexturePaint */ public void setPaint(Paint paint) { if (paint == null) return; this.paint = paint; if (paint instanceof Color) foreground = (Color) paint; } /** * Sets the <code>Stroke</code> for the <code>Graphics2D</code> context. * * @param s * the <code>Stroke</code> object to be used to stroke a * <code>Shape</code> during the rendering process * @see BasicStroke */ public void setStroke(Stroke s) { stroke = s; } /** * Sets the value of a single preference for the rendering algorithms. Hint * categories include controls for rendering quality and overall time/quality * trade-off in the rendering process. Refer to the * <code>RenderingHints</code> class for definitions of some common keys and * values. * * @param hintKey * the key of the hint to be set. * @param hintValue * the value indicating preferences for the specified hint category. * @see RenderingHints */ public void setRenderingHint(RenderingHints.Key hintKey, Object hintValue) { hints.put(hintKey, hintValue); } /** * Returns the value of a single preference for the rendering algorithms. Hint * categories include controls for rendering quality and overall time/quality * trade-off in the rendering process. Refer to the * <code>RenderingHints</code> class for definitions of some common keys and * values. * * @param hintKey * the key corresponding to the hint to get. * @return an object representing the value for the specified hint key. Some * of the keys and their associated values are defined in the * <code>RenderingHints</code> class. * @see RenderingHints */ public Object getRenderingHint(RenderingHints.Key hintKey) { return hints.get(hintKey); } /** * Replaces the values of all preferences for the rendering algorithms with * the specified <code>hints</code>. The existing values for all rendering * hints are discarded and the new set of known hints and values are * initialized from the specified {@link Map} object. Hint categories include * controls for rendering quality and overall time/quality trade-off in the * rendering process. Refer to the <code>RenderingHints</code> class for * definitions of some common keys and values. * * @param hints * the rendering hints to be set * @see RenderingHints */ public void setRenderingHints(Map hints) { this.hints = new RenderingHints(hints); } /** * Sets the values of an arbitrary number of preferences for the rendering * algorithms. Only values for the rendering hints that are present in the * specified <code>Map</code> object are modified. All other preferences not * present in the specified object are left unmodified. Hint categories * include controls for rendering quality and overall time/quality trade-off * in the rendering process. Refer to the <code>RenderingHints</code> class * for definitions of some common keys and values. * * @param hints * the rendering hints to be set * @see RenderingHints */ public void addRenderingHints(Map hints) { this.hints.putAll(hints); } /** * Gets the preferences for the rendering algorithms. Hint categories include * controls for rendering quality and overall time/quality trade-off in the * rendering process. Returns all of the hint key/value pairs that were ever * specified in one operation. Refer to the <code>RenderingHints</code> * class for definitions of some common keys and values. * * @return a reference to an instance of <code>RenderingHints</code> that * contains the current preferences. * @see RenderingHints */ public RenderingHints getRenderingHints() { return hints; } /** * Translates the origin of the graphics context to the point (<i>x</i>, <i>y</i>) * in the current coordinate system. Modifies this graphics context so that * its new origin corresponds to the point (<i>x</i>, <i>y</i>) in * this graphics context's original coordinate system. All coordinates used in * subsequent rendering operations on this graphics context will be relative * to this new origin. * * @param x * the <i>x</i> coordinate. * @param y * the <i>y</i> coordinate. */ public void translate(int x, int y) { if (x != 0 || y != 0) { transform.translate(x, y); transformStack.add(TransformStackElement.createTranslateElement(x, y)); } } /** * Concatenates the current <code>Graphics2D</code> <code>Transform</code> * with a translation transform. Subsequent rendering is translated by the * specified distance relative to the previous position. This is equivalent to * calling transform(T), where T is an <code>AffineTransform</code> * represented by the following matrix: * * <pre> * [ 1 0 tx ] * [ 0 1 ty ] * [ 0 0 1 ] * </pre> * * @param tx * the distance to translate along the x-axis * @param ty * the distance to translate along the y-axis */ public void translate(double tx, double ty) { transform.translate(tx, ty); transformStack.add(TransformStackElement.createTranslateElement(tx, ty)); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a rotation transform. Subsequent rendering is rotated by the specified * radians relative to the previous origin. This is equivalent to calling * <code>transform(R)</code>, where R is an <code>AffineTransform</code> * represented by the following matrix: * * <pre> * [ cos(theta) -sin(theta) 0 ] * [ sin(theta) cos(theta) 0 ] * [ 0 0 1 ] * </pre> * * Rotating with a positive angle theta rotates points on the positive x axis * toward the positive y axis. * * @param theta * the angle of rotation in radians */ public void rotate(double theta) { transform.rotate(theta); transformStack.add(TransformStackElement.createRotateElement(theta)); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a translated rotation transform. Subsequent rendering is transformed * by a transform which is constructed by translating to the specified * location, rotating by the specified radians, and translating back by the * same amount as the original translation. This is equivalent to the * following sequence of calls: * * <pre> * translate(x, y); * rotate(theta); * translate(-x, -y); * </pre> * * Rotating with a positive angle theta rotates points on the positive x axis * toward the positive y axis. * * @param theta * the angle of rotation in radians * @param x * x coordinate of the origin of the rotation * @param y * y coordinate of the origin of the rotation */ public void rotate(double theta, double x, double y) { transform.rotate(theta, x, y); transformStack.add(TransformStackElement.createTranslateElement(x, y)); transformStack.add(TransformStackElement.createRotateElement(theta)); transformStack.add(TransformStackElement.createTranslateElement(-x, -y)); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a scaling transformation Subsequent rendering is resized according to * the specified scaling factors relative to the previous scaling. This is * equivalent to calling <code>transform(S)</code>, where S is an * <code>AffineTransform</code> represented by the following matrix: * * <pre> * [ sx 0 0 ] * [ 0 sy 0 ] * [ 0 0 1 ] * </pre> * * @param sx * the amount by which X coordinates in subsequent rendering * operations are multiplied relative to previous rendering * operations. * @param sy * the amount by which Y coordinates in subsequent rendering * operations are multiplied relative to previous rendering * operations. */ public void scale(double sx, double sy) { transform.scale(sx, sy); transformStack.add(TransformStackElement.createScaleElement(sx, sy)); } /** * Concatenates the current <code>Graphics2D</code> * <code>Transform</code> * with a shearing transform. Subsequent renderings are sheared by the * specified multiplier relative to the previous position. This is equivalent * to calling <code>transform(SH)</code>, where SH is an * <code>AffineTransform</code> represented by the following matrix: * * <pre> * [ 1 shx 0 ] * [ shy 1 0 ] * [ 0 0 1 ] * </pre> * * @param shx * the multiplier by which coordinates are shifted in the positive X * axis direction as a function of their Y coordinate * @param shy * the multiplier by which coordinates are shifted in the positive Y * axis direction as a function of their X coordinate */ public void shear(double shx, double shy) { transform.shear(shx, shy); transformStack.add(TransformStackElement.createShearElement(shx, shy)); } /** * Composes an <code>AffineTransform</code> object with the * <code>Transform</code> in this <code>Graphics2D</code> according to the * rule last-specified-first-applied. If the current <code>Transform</code> * is Cx, the result of composition with Tx is a new <code>Transform</code> * Cx'. Cx' becomes the current <code>Transform</code> for this * <code>Graphics2D</code>. Transforming a point p by the updated * <code>Transform</code> Cx' is equivalent to first transforming p by Tx * and then transforming the result by the original <code>Transform</code> * Cx. In other words, Cx'(p) = Cx(Tx(p)). A copy of the Tx is made, if * necessary, so further modifications to Tx do not affect rendering. * * @param Tx * the <code>AffineTransform</code> object to be composed with the * current <code>Transform</code> * @see #setTransform * @see AffineTransform */ public void transform(AffineTransform Tx) { transform.concatenate(Tx); transformStack.add(TransformStackElement.createGeneralTransformElement(Tx)); } /** * Sets the <code>Transform</code> in the <code>Graphics2D</code> context. * * @param Tx * the <code>AffineTransform</code> object to be used in the * rendering process * @see #transform * @see AffineTransform */ public void setTransform(AffineTransform Tx) { transform = new AffineTransform(Tx); invalidateTransformStack(); if (!Tx.isIdentity()) transformStack.add(TransformStackElement.createGeneralTransformElement(Tx)); } /** * Marks the GraphicContext's isNewTransformStack to false as a memento that * the current transform stack was read and has not been reset. Only the * setTransform method can override this memento. */ public void validateTransformStack() { transformStackValid = true; } /** * Checks the status of the transform stack */ public boolean isTransformStackValid() { return transformStackValid; } /** * @return array containing the successive transforms that were concatenated * with the original one. */ public TransformStackElement[] getTransformStack() { TransformStackElement[] stack = new TransformStackElement[transformStack.size()]; transformStack.toArray(stack); return stack; } /** * Marks the GraphicContext's isNewTransformStack to true as a memento that * the current transform stack was reset since it was last read. Only * validateTransformStack can override this memento */ protected void invalidateTransformStack() { transformStack.clear(); transformStackValid = false; } /** * Returns a copy of the current <code>Transform</code> in the * <code>Graphics2D</code> context. * * @return the current <code>AffineTransform</code> in the * <code>Graphics2D</code> context. * @see #transform * @see #setTransform */ public AffineTransform getTransform() { return new AffineTransform(transform); } /** * Returns the current <code>Paint</code> of the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Paint</code>, which * defines a color or pattern. * @see #setPaint * @see java.awt.Graphics#setColor */ public Paint getPaint() { return paint; } /** * Returns the current <code>Composite</code> in the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Composite</code>, * which defines a compositing style. * @see #setComposite */ public Composite getComposite() { return composite; } /** * Sets the background color for the <code>Graphics2D</code> context. The * background color is used for clearing a region. When a * <code>Graphics2D</code> is constructed for a <code>Component</code>, * the background color is inherited from the <code>Component</code>. * Setting the background color in the <code>Graphics2D</code> context only * affects the subsequent <code>clearRect</code> calls and not the * background color of the <code>Component</code>. To change the background * of the <code>Component</code>, use appropriate methods of the * <code>Component</code>. * * @param color * the background color that isused in subsequent calls to * <code>clearRect</code> * @see #getBackground * @see java.awt.Graphics#clearRect */ public void setBackground(Color color) { if (color == null) return; background = color; } /** * Returns the background color used for clearing a region. * * @return the current <code>Graphics2D</code> <code>Color</code>, which * defines the background color. * @see #setBackground */ public Color getBackground() { return background; } /** * Returns the current <code>Stroke</code> in the <code>Graphics2D</code> * context. * * @return the current <code>Graphics2D</code> <code>Stroke</code>, which * defines the line style. * @see #setStroke */ public Stroke getStroke() { return stroke; } /** * Intersects the current <code>Clip</code> with the interior of the * specified <code>Shape</code> and sets the <code>Clip</code> to the * resulting intersection. The specified <code>Shape</code> is transformed * with the current <code>Graphics2D</code> * <code>Transform</code> before * being intersected with the current <code>Clip</code>. This method is * used to make the current <code>Clip</code> smaller. To make the * <code>Clip</code> larger, use <code>setClip</code>. The <i>user clip</i> * modified by this method is independent of the clipping associated with * device bounds and visibility. If no clip has previously been set, or if the * clip has been cleared using * {@link java.awt.Graphics#setClip(Shape) setClip} with a <code>null</code> * argument, the specified <code>Shape</code> becomes the new user clip. * * @param s * the <code>Shape</code> to be intersected with the current * <code>Clip</code>. If <code>s</code> is <code>null</code>, * this method clears the current <code>Clip</code>. */ public void clip(Shape s) { if (s != null) s = transform.createTransformedShape(s); if (clip != null) { Area newClip = new Area(clip); newClip.intersect(new Area(s)); clip = new GeneralPath(newClip); } else { clip = s; } } /** * Get the rendering context of the <code>Font</code> within this * <code>Graphics2D</code> context. The {@link FontRenderContext} * encapsulates application hints such as anti-aliasing and fractional * metrics, as well as target device specific information such as * dots-per-inch. This information should be provided by the application when * using objects that perform typographical formatting, such as * <code>Font</code> and <code>TextLayout</code>. This information should * also be provided by applications that perform their own layout and need * accurate measurements of various characteristics of glyphs such as advance * and line height when various rendering hints have been applied to the text * rendering. * * @return a reference to an instance of FontRenderContext. * @see java.awt.font.FontRenderContext * @see java.awt.Font#createGlyphVector(FontRenderContext,char[]) * @see java.awt.font.TextLayout * @since JDK1.2 */ public FontRenderContext getFontRenderContext() { // // Find if antialiasing should be used. // Object antialiasingHint = hints.get(RenderingHints.KEY_TEXT_ANTIALIASING); boolean isAntialiased = true; if (antialiasingHint != RenderingHints.VALUE_TEXT_ANTIALIAS_ON && antialiasingHint != RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT) { // If antialias was not turned off, then use the general rendering // hint. if (antialiasingHint != RenderingHints.VALUE_TEXT_ANTIALIAS_OFF) { antialiasingHint = hints.get(RenderingHints.KEY_ANTIALIASING); // Test general hint if (antialiasingHint != RenderingHints.VALUE_ANTIALIAS_ON && antialiasingHint != RenderingHints.VALUE_ANTIALIAS_DEFAULT) { // Antialiasing was not requested. However, if it was not turned // off explicitly, use it. if (antialiasingHint == RenderingHints.VALUE_ANTIALIAS_OFF) isAntialiased = false; } } else isAntialiased = false; } // // Find out whether fractional metrics should be used. // boolean useFractionalMetrics = true; if (hints.get(RenderingHints.KEY_FRACTIONALMETRICS) == RenderingHints.VALUE_FRACTIONALMETRICS_OFF) useFractionalMetrics = false; FontRenderContext frc = new FontRenderContext(defaultTransform, isAntialiased, useFractionalMetrics); return frc; } } /* * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * */ /** * Contains a description of an elementary transform stack element, such as a * rotate or translate. A transform stack element has a type and a value, which * is an array of double values.<br> * * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a> * @author <a href="mailto:paul_evenblij@compuware.com">Paul Evenblij</a> * @version $Id: TransformStackElement.java 478249 2006-11-22 17:29:37Z dvholten $ */ abstract class TransformStackElement implements Cloneable { /** * Transform type */ private TransformType type; /** * Value */ private double[] transformParameters; /** * @param type * transform type * @param transformParameters * parameters for transform */ protected TransformStackElement(TransformType type, double[] transformParameters) { this.type = type; this.transformParameters = transformParameters; } /** * @return an object which is a deep copy of this one */ public Object clone() { TransformStackElement newElement = null; // start with a shallow copy to get our implementations right try { newElement = (TransformStackElement) super.clone(); } catch (java.lang.CloneNotSupportedException ex) { } // now deep copy the parameter array double[] transformParameters = new double[this.transformParameters.length]; System.arraycopy(this.transformParameters, 0, transformParameters, 0, transformParameters.length); newElement.transformParameters = transformParameters; return newElement; } /* * Factory methods */ public static TransformStackElement createTranslateElement(double tx, double ty) { return new TransformStackElement(TransformType.TRANSLATE, new double[] { tx, ty }) { boolean isIdentity(double[] parameters) { return parameters[0] == 0 && parameters[1] == 0; } }; } public static TransformStackElement createRotateElement(double theta) { return new TransformStackElement(TransformType.ROTATE, new double[] { theta }) { boolean isIdentity(double[] parameters) { return Math.cos(parameters[0]) == 1; } }; } public static TransformStackElement createScaleElement(double scaleX, double scaleY) { return new TransformStackElement(TransformType.SCALE, new double[] { scaleX, scaleY }) { boolean isIdentity(double[] parameters) { return parameters[0] == 1 && parameters[1] == 1; } }; } public static TransformStackElement createShearElement(double shearX, double shearY) { return new TransformStackElement(TransformType.SHEAR, new double[] { shearX, shearY }) { boolean isIdentity(double[] parameters) { return parameters[0] == 0 && parameters[1] == 0; } }; } public static TransformStackElement createGeneralTransformElement(AffineTransform txf) { double[] matrix = new double[6]; txf.getMatrix(matrix); return new TransformStackElement(TransformType.GENERAL, matrix) { boolean isIdentity(double[] m) { return (m[0] == 1 && m[2] == 0 && m[4] == 0 && m[1] == 0 && m[3] == 1 && m[5] == 0); } }; } /** * Implementation should determine if the parameter list represents an * identity transform, for the instance transform type. */ abstract boolean isIdentity(double[] parameters); /** * @return true iff this transform is the identity transform */ public boolean isIdentity() { return isIdentity(transformParameters); } /** * @return array of values containing this transform element's parameters */ public double[] getTransformParameters() { return transformParameters; } /** * @return this transform type */ public TransformType getType() { return type; } /* * Concatenation utility. Requests this transform stack element to concatenate * with the input stack element. Only elements of the same types are * concatenated. For example, if this element represents a translation, it * will concatenate with another translation, but not with any other kind of * stack element. @param stackElement element to be concatenated with this * one. @return true if the input stackElement was concatenated with this one. * False otherwise. */ public boolean concatenate(TransformStackElement stackElement) { boolean canConcatenate = false; if (type.toInt() == stackElement.type.toInt()) { canConcatenate = true; switch (type.toInt()) { case TransformType.TRANSFORM_TRANSLATE: transformParameters[0] += stackElement.transformParameters[0]; transformParameters[1] += stackElement.transformParameters[1]; break; case TransformType.TRANSFORM_ROTATE: transformParameters[0] += stackElement.transformParameters[0]; break; case TransformType.TRANSFORM_SCALE: transformParameters[0] *= stackElement.transformParameters[0]; transformParameters[1] *= stackElement.transformParameters[1]; break; case TransformType.TRANSFORM_GENERAL: transformParameters = matrixMultiply(transformParameters, stackElement.transformParameters); break; default: canConcatenate = false; } } return canConcatenate; } /** * Multiplies two 2x3 matrices of double precision values */ private double[] matrixMultiply(double[] matrix1, double[] matrix2) { double[] product = new double[6]; AffineTransform transform1 = new AffineTransform(matrix1); transform1.concatenate(new AffineTransform(matrix2)); transform1.getMatrix(product); return product; } } /* * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. * */ /** * Enumeration for transformation types. * * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a> * @version $Id: TransformType.java 504084 2007-02-06 11:24:46Z dvholten $ */ class TransformType { /* * Transform type constants */ public static final int TRANSFORM_TRANSLATE = 0; public static final int TRANSFORM_ROTATE = 1; public static final int TRANSFORM_SCALE = 2; public static final int TRANSFORM_SHEAR = 3; public static final int TRANSFORM_GENERAL = 4; /** * Strings describing the elementary transforms */ public static final String TRANSLATE_STRING = "translate"; public static final String ROTATE_STRING = "rotate"; public static final String SCALE_STRING = "scale"; public static final String SHEAR_STRING = "shear"; public static final String GENERAL_STRING = "general"; /** * TransformType values */ public static final TransformType TRANSLATE = new TransformType(TRANSFORM_TRANSLATE, TRANSLATE_STRING); public static final TransformType ROTATE = new TransformType(TRANSFORM_ROTATE, ROTATE_STRING); public static final TransformType SCALE = new TransformType(TRANSFORM_SCALE, SCALE_STRING); public static final TransformType SHEAR = new TransformType(TRANSFORM_SHEAR, SHEAR_STRING); public static final TransformType GENERAL = new TransformType(TRANSFORM_GENERAL, GENERAL_STRING); private String desc; private int val; /** * Constructor is private so that no instances other than the ones in the * enumeration can be created. * * @see #readResolve */ private TransformType(int val, String desc) { this.desc = desc; this.val = val; } /** * @return description */ public String toString() { return desc; } /** * Convenience for enumeration switching. That is, * * <pre> * switch(transformType.toInt()){ * case TransformType.TRANSFORM_TRANSLATE: * .... * case TransformType.TRANSFORM_ROTATE: * </pre> */ public int toInt() { return val; } /** * This is called by the serialization code before it returns an unserialized * object. To provide for unicity of instances, the instance that was read is * replaced by its static equivalent */ public Object readResolve() { switch (val) { case TRANSFORM_TRANSLATE: return TransformType.TRANSLATE; case TRANSFORM_ROTATE: return TransformType.ROTATE; case TRANSFORM_SCALE: return TransformType.SCALE; case TRANSFORM_SHEAR: return TransformType.SHEAR; case TRANSFORM_GENERAL: return TransformType.GENERAL; default: throw new Error("Unknown TransformType value:" + val); } } }