Matrix.java Source code

Java tutorial

Introduction

Here is the source code for Matrix.java

Source

//package aima.core.util.math;

import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.List;
import java.util.Locale;

/**
 * Jama = Java Matrix class.
 * <P>
 * The Java Matrix Class provides the fundamental operations of numerical linear
 * algebra. Various constructors create Matrices from two dimensional arrays of
 * double precision floating point numbers. Various "gets" and "sets" provide
 * access to submatrices and matrix elements. Several methods implement basic
 * matrix arithmetic, including matrix addition and multiplication, matrix
 * norms, and element-by-element array operations. Methods for reading and
 * printing matrices are also included. All the operations in this version of
 * the Matrix Class involve real matrices. Complex matrices may be handled in a
 * future version.
 * <P>
 * Five fundamental matrix decompositions, which consist of pairs or triples of
 * matrices, permutation vectors, and the like, produce results in five
 * decomposition classes. These decompositions are accessed by the Matrix class
 * to compute solutions of simultaneous linear equations, determinants, inverses
 * and other matrix functions. The five decompositions are:
 * <P>
 * <UL>
 * <LI>Cholesky Decomposition of symmetric, positive definite matrices.
 * <LI>LU Decomposition of rectangular matrices.
 * <LI>QR Decomposition of rectangular matrices.
 * <LI>Singular Value Decomposition of rectangular matrices.
 * <LI>Eigenvalue Decomposition of both symmetric and nonsymmetric square
 * matrices.
 * </UL>
 * <DL>
 * <DT><B>Example of use:</B></DT>
 * <P>
 * <DD>Solve a linear system A x = b and compute the residual norm, ||b - A x||.
 * <P>
 * 
 * <PRE>
 * double[][] vals = { { 1., 2., 3 }, { 4., 5., 6. }, { 7., 8., 10. } };
 * Matrix A = new Matrix(vals);
 * Matrix b = Matrix.random(3, 1);
 * Matrix x = A.solve(b);
 * Matrix r = A.times(x).minus(b);
 * double rnorm = r.normInf();
 * </PRE>
 * 
 * </DD>
 * </DL>
 * 
 * @author The MathWorks, Inc. and the National Institute of Standards and
 *         Technology.
 * @version 5 August 1998
 */
public class Matrix implements Cloneable, java.io.Serializable {
    private static final long serialVersionUID = 1L;

    /*
     * ------------------------ Class variables ------------------------
     */

    /**
     * Array for internal storage of elements.
     * 
     * @serial internal array storage.
     */
    private final double[][] A;

    /**
     * Row and column dimensions.
     * 
     * @serial row dimension.
     * @serial column dimension.
     */
    private final int m, n;

    /*
     * ------------------------ Constructors ------------------------
     */

    /** Construct a diagonal Matrix from the given List of doubles */
    public static Matrix createDiagonalMatrix(List<Double> values) {
        Matrix m = new Matrix(values.size(), values.size(), 0);
        for (int i = 0; i < values.size(); i++) {
            m.set(i, i, values.get(i));
        }
        return m;
    }

    /**
     * Construct an m-by-n matrix of zeros.
     * 
     * @param m
     *            Number of rows.
     * @param n
     *            Number of colums.
     */

    public Matrix(int m, int n) {
        this.m = m;
        this.n = n;
        A = new double[m][n];
    }

    /**
     * Construct an m-by-n constant matrix.
     * 
     * @param m
     *            Number of rows.
     * @param n
     *            Number of colums.
     * @param s
     *            Fill the matrix with this scalar value.
     */

    public Matrix(int m, int n, double s) {
        this.m = m;
        this.n = n;
        A = new double[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = s;
            }
        }
    }

    /**
     * Construct a matrix from a 2-D array.
     * 
     * @param A
     *            Two-dimensional array of doubles.
     * @exception IllegalArgumentException
     *                All rows must have the same length
     * @see #constructWithCopy
     */

    public Matrix(double[][] A) {
        m = A.length;
        n = A[0].length;
        for (int i = 0; i < m; i++) {
            if (A[i].length != n) {
                throw new IllegalArgumentException("All rows must have the same length.");
            }
        }
        this.A = A;
    }

    /**
     * Construct a matrix quickly without checking arguments.
     * 
     * @param A
     *            Two-dimensional array of doubles.
     * @param m
     *            Number of rows.
     * @param n
     *            Number of colums.
     */

    public Matrix(double[][] A, int m, int n) {
        this.A = A;
        this.m = m;
        this.n = n;
    }

    /**
     * Construct a matrix from a one-dimensional packed array
     * 
     * @param vals
     *            One-dimensional array of doubles, packed by columns (ala
     *            Fortran).
     * @param m
     *            Number of rows.
     * @exception IllegalArgumentException
     *                Array length must be a multiple of m.
     */

    public Matrix(double vals[], int m) {
        this.m = m;
        n = (m != 0 ? vals.length / m : 0);
        if (m * n != vals.length) {
            throw new IllegalArgumentException("Array length must be a multiple of m.");
        }
        A = new double[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = vals[i + j * m];
            }
        }
    }

    /*
     * ------------------------ Public Methods ------------------------
     */

    /**
     * Construct a matrix from a copy of a 2-D array.
     * 
     * @param A
     *            Two-dimensional array of doubles.
     * @exception IllegalArgumentException
     *                All rows must have the same length
     */

    public static Matrix constructWithCopy(double[][] A) {
        int m = A.length;
        int n = A[0].length;
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            if (A[i].length != n) {
                throw new IllegalArgumentException("All rows must have the same length.");
            }
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j];
            }
        }
        return X;
    }

    /**
     * Make a deep copy of a matrix
     */

    public Matrix copy() {
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j];
            }
        }
        return X;
    }

    /**
     * Clone the Matrix object.
     */

    @Override
    public Object clone() {
        return this.copy();
    }

    /**
     * Access the internal two-dimensional array.
     * 
     * @return Pointer to the two-dimensional array of matrix elements.
     */

    public double[][] getArray() {
        return A;
    }

    /**
     * Copy the internal two-dimensional array.
     * 
     * @return Two-dimensional array copy of matrix elements.
     */

    public double[][] getArrayCopy() {
        double[][] C = new double[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j];
            }
        }
        return C;
    }

    /**
     * Make a one-dimensional column packed copy of the internal array.
     * 
     * @return Matrix elements packed in a one-dimensional array by columns.
     */

    public double[] getColumnPackedCopy() {
        double[] vals = new double[m * n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                vals[i + j * m] = A[i][j];
            }
        }
        return vals;
    }

    /**
     * Make a one-dimensional row packed copy of the internal array.
     * 
     * @return Matrix elements packed in a one-dimensional array by rows.
     */

    public double[] getRowPackedCopy() {
        double[] vals = new double[m * n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                vals[i * n + j] = A[i][j];
            }
        }
        return vals;
    }

    /**
     * Get row dimension.
     * 
     * @return m, the number of rows.
     */

    public int getRowDimension() {
        return m;
    }

    /**
     * Get column dimension.
     * 
     * @return n, the number of columns.
     */

    public int getColumnDimension() {
        return n;
    }

    /**
     * Get a single element.
     * 
     * @param i
     *            Row index.
     * @param j
     *            Column index.
     * @return A(i,j)
     * @exception ArrayIndexOutOfBoundsException
     */

    public double get(int i, int j) {
        return A[i][j];
    }

    /**
     * Get a submatrix.
     * 
     * @param i0
     *            Initial row index
     * @param i1
     *            Final row index
     * @param j0
     *            Initial column index
     * @param j1
     *            Final column index
     * @return A(i0:i1,j0:j1)
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public Matrix getMatrix(int i0, int i1, int j0, int j1) {
        Matrix X = new Matrix(i1 - i0 + 1, j1 - j0 + 1);
        double[][] B = X.getArray();
        try {
            for (int i = i0; i <= i1; i++) {
                for (int j = j0; j <= j1; j++) {
                    B[i - i0][j - j0] = A[i][j];
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
        return X;
    }

    /**
     * Get a submatrix.
     * 
     * @param r
     *            Array of row indices.
     * @param c
     *            Array of column indices.
     * @return A(r(:),c(:))
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public Matrix getMatrix(int[] r, int[] c) {
        Matrix X = new Matrix(r.length, c.length);
        double[][] B = X.getArray();
        try {
            for (int i = 0; i < r.length; i++) {
                for (int j = 0; j < c.length; j++) {
                    B[i][j] = A[r[i]][c[j]];
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
        return X;
    }

    /**
     * Get a submatrix.
     * 
     * @param i0
     *            Initial row index
     * @param i1
     *            Final row index
     * @param c
     *            Array of column indices.
     * @return A(i0:i1,c(:))
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public Matrix getMatrix(int i0, int i1, int[] c) {
        Matrix X = new Matrix(i1 - i0 + 1, c.length);
        double[][] B = X.getArray();
        try {
            for (int i = i0; i <= i1; i++) {
                for (int j = 0; j < c.length; j++) {
                    B[i - i0][j] = A[i][c[j]];
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
        return X;
    }

    /**
     * Get a submatrix.
     * 
     * @param r
     *            Array of row indices.
     * @param j0
     *            Initial column index
     * @param j1
     *            Final column index
     * @return A(r(:),j0:j1)
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public Matrix getMatrix(int[] r, int j0, int j1) {
        Matrix X = new Matrix(r.length, j1 - j0 + 1);
        double[][] B = X.getArray();
        try {
            for (int i = 0; i < r.length; i++) {
                for (int j = j0; j <= j1; j++) {
                    B[i][j - j0] = A[r[i]][j];
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
        return X;
    }

    /**
     * Set a single element.
     * 
     * @param i
     *            Row index.
     * @param j
     *            Column index.
     * @param s
     *            A(i,j).
     * @exception ArrayIndexOutOfBoundsException
     */

    public void set(int i, int j, double s) {
        A[i][j] = s;
    }

    /**
     * Set a submatrix.
     * 
     * @param i0
     *            Initial row index
     * @param i1
     *            Final row index
     * @param j0
     *            Initial column index
     * @param j1
     *            Final column index
     * @param X
     *            A(i0:i1,j0:j1)
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public void setMatrix(int i0, int i1, int j0, int j1, Matrix X) {
        try {
            for (int i = i0; i <= i1; i++) {
                for (int j = j0; j <= j1; j++) {
                    A[i][j] = X.get(i - i0, j - j0);
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
    }

    /**
     * Set a submatrix.
     * 
     * @param r
     *            Array of row indices.
     * @param c
     *            Array of column indices.
     * @param X
     *            A(r(:),c(:))
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public void setMatrix(int[] r, int[] c, Matrix X) {
        try {
            for (int i = 0; i < r.length; i++) {
                for (int j = 0; j < c.length; j++) {
                    A[r[i]][c[j]] = X.get(i, j);
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
    }

    /**
     * Set a submatrix.
     * 
     * @param r
     *            Array of row indices.
     * @param j0
     *            Initial column index
     * @param j1
     *            Final column index
     * @param X
     *            A(r(:),j0:j1)
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public void setMatrix(int[] r, int j0, int j1, Matrix X) {
        try {
            for (int i = 0; i < r.length; i++) {
                for (int j = j0; j <= j1; j++) {
                    A[r[i]][j] = X.get(i, j - j0);
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
    }

    /**
     * Set a submatrix.
     * 
     * @param i0
     *            Initial row index
     * @param i1
     *            Final row index
     * @param c
     *            Array of column indices.
     * @param X
     *            A(i0:i1,c(:))
     * @exception ArrayIndexOutOfBoundsException
     *                Submatrix indices
     */

    public void setMatrix(int i0, int i1, int[] c, Matrix X) {
        try {
            for (int i = i0; i <= i1; i++) {
                for (int j = 0; j < c.length; j++) {
                    A[i][c[j]] = X.get(i - i0, j);
                }
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new ArrayIndexOutOfBoundsException("Submatrix indices");
        }
    }

    /**
     * Matrix transpose.
     * 
     * @return A'
     */

    public Matrix transpose() {
        Matrix X = new Matrix(n, m);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[j][i] = A[i][j];
            }
        }
        return X;
    }

    /**
     * One norm
     * 
     * @return maximum column sum.
     */

    public double norm1() {
        double f = 0;
        for (int j = 0; j < n; j++) {
            double s = 0;
            for (int i = 0; i < m; i++) {
                s += Math.abs(A[i][j]);
            }
            f = Math.max(f, s);
        }
        return f;
    }

    /**
     * Two norm
     * 
     * @return maximum singular value.
     */

    // public double norm2 () {
    // return (new SingularValueDecomposition(this).norm2());
    // }
    /**
     * Infinity norm
     * 
     * @return maximum row sum.
     */

    public double normInf() {
        double f = 0;
        for (int i = 0; i < m; i++) {
            double s = 0;
            for (int j = 0; j < n; j++) {
                s += Math.abs(A[i][j]);
            }
            f = Math.max(f, s);
        }
        return f;
    }

    /**
     * Frobenius norm
     * 
     * @return sqrt of sum of squares of all elements.
     */

    // public double normF () {
    // double f = 0;
    // for (int i = 0; i < m; i++) {
    // for (int j = 0; j < n; j++) {
    // f = Maths.hypot(f,A[i][j]);
    // }
    // }
    // return f;
    // }
    /**
     * Unary minus
     * 
     * @return -A
     */

    public Matrix uminus() {
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = -A[i][j];
            }
        }
        return X;
    }

    /**
     * C = A + B
     * 
     * @param B
     *            another matrix
     * @return A + B
     */

    public Matrix plus(Matrix B) {
        checkMatrixDimensions(B);
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] + B.A[i][j];
            }
        }
        return X;
    }

    /**
     * A = A + B
     * 
     * @param B
     *            another matrix
     * @return A + B
     */

    public Matrix plusEquals(Matrix B) {
        checkMatrixDimensions(B);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = A[i][j] + B.A[i][j];
            }
        }
        return this;
    }

    /**
     * C = A - B
     * 
     * @param B
     *            another matrix
     * @return A - B
     */

    public Matrix minus(Matrix B) {
        checkMatrixDimensions(B);
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] - B.A[i][j];
            }
        }
        return X;
    }

    /**
     * A = A - B
     * 
     * @param B
     *            another matrix
     * @return A - B
     */

    public Matrix minusEquals(Matrix B) {
        checkMatrixDimensions(B);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = A[i][j] - B.A[i][j];
            }
        }
        return this;
    }

    /**
     * Element-by-element multiplication, C = A.*B
     * 
     * @param B
     *            another matrix
     * @return A.*B
     */

    public Matrix arrayTimes(Matrix B) {
        checkMatrixDimensions(B);
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] * B.A[i][j];
            }
        }
        return X;
    }

    /**
     * Element-by-element multiplication in place, A = A.*B
     * 
     * @param B
     *            another matrix
     * @return A.*B
     */

    public Matrix arrayTimesEquals(Matrix B) {
        checkMatrixDimensions(B);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = A[i][j] * B.A[i][j];
            }
        }
        return this;
    }

    /**
     * Element-by-element right division, C = A./B
     * 
     * @param B
     *            another matrix
     * @return A./B
     */

    public Matrix arrayRightDivide(Matrix B) {
        checkMatrixDimensions(B);
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = A[i][j] / B.A[i][j];
            }
        }
        return X;
    }

    /**
     * Element-by-element right division in place, A = A./B
     * 
     * @param B
     *            another matrix
     * @return A./B
     */

    public Matrix arrayRightDivideEquals(Matrix B) {
        checkMatrixDimensions(B);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = A[i][j] / B.A[i][j];
            }
        }
        return this;
    }

    /**
     * Element-by-element left division, C = A.\B
     * 
     * @param B
     *            another matrix
     * @return A.\B
     */

    public Matrix arrayLeftDivide(Matrix B) {
        checkMatrixDimensions(B);
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = B.A[i][j] / A[i][j];
            }
        }
        return X;
    }

    /**
     * Element-by-element left division in place, A = A.\B
     * 
     * @param B
     *            another matrix
     * @return A.\B
     */

    public Matrix arrayLeftDivideEquals(Matrix B) {
        checkMatrixDimensions(B);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = B.A[i][j] / A[i][j];
            }
        }
        return this;
    }

    /**
     * Multiply a matrix by a scalar, C = s*A
     * 
     * @param s
     *            scalar
     * @return s*A
     */

    public Matrix times(double s) {
        Matrix X = new Matrix(m, n);
        double[][] C = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                C[i][j] = s * A[i][j];
            }
        }
        return X;
    }

    /**
     * Multiply a matrix by a scalar in place, A = s*A
     * 
     * @param s
     *            scalar
     * @return replace A by s*A
     */

    public Matrix timesEquals(double s) {
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                A[i][j] = s * A[i][j];
            }
        }
        return this;
    }

    /**
     * Linear algebraic matrix multiplication, A * B
     * 
     * @param B
     *            another matrix
     * @return Matrix product, A * B
     * @exception IllegalArgumentException
     *                Matrix inner dimensions must agree.
     */

    public Matrix times(Matrix B) {
        if (B.m != n) {
            throw new IllegalArgumentException("Matrix inner dimensions must agree.");
        }
        Matrix X = new Matrix(m, B.n);
        double[][] C = X.getArray();
        double[] Bcolj = new double[n];
        for (int j = 0; j < B.n; j++) {
            for (int k = 0; k < n; k++) {
                Bcolj[k] = B.A[k][j];
            }
            for (int i = 0; i < m; i++) {
                double[] Arowi = A[i];
                double s = 0;
                for (int k = 0; k < n; k++) {
                    s += Arowi[k] * Bcolj[k];
                }
                C[i][j] = s;
            }
        }
        return X;
    }

    /**
     * LU Decomposition
     * 
     * @return LUDecomposition
     * @see LUDecomposition
     */

    public LUDecomposition lu() {
        return new LUDecomposition(this);
    }

    // /** QR Decomposition
    // @return QRDecomposition
    // @see QRDecomposition
    // */
    //
    // public QRDecomposition qr () {
    // return new QRDecomposition(this);
    // }
    //
    // /** Cholesky Decomposition
    // @return CholeskyDecomposition
    // @see CholeskyDecomposition
    // */
    //
    // public CholeskyDecomposition chol () {
    // return new CholeskyDecomposition(this);
    // }
    //
    // /** Singular Value Decomposition
    // @return SingularValueDecomposition
    // @see SingularValueDecomposition
    // */
    //
    // public SingularValueDecomposition svd () {
    // return new SingularValueDecomposition(this);
    // }
    //
    // /** Eigenvalue Decomposition
    // @return EigenvalueDecomposition
    // @see EigenvalueDecomposition
    // */
    //
    // public EigenvalueDecomposition eig () {
    // return new EigenvalueDecomposition(this);
    // }

    /**
     * Solve A*X = B
     * 
     * @param B
     *            right hand side
     * @return solution if A is square, least squares solution otherwise
     */

    public Matrix solve(Matrix B) {
        // assumed m == n
        return new LUDecomposition(this).solve(B);

    }

    /**
     * Solve X*A = B, which is also A'*X' = B'
     * 
     * @param B
     *            right hand side
     * @return solution if A is square, least squares solution otherwise.
     */

    public Matrix solveTranspose(Matrix B) {
        return transpose().solve(B.transpose());
    }

    /**
     * Matrix inverse or pseudoinverse
     * 
     * @return inverse(A) if A is square, pseudoinverse otherwise.
     */

    public Matrix inverse() {
        return solve(identity(m, m));
    }

    /**
     * Matrix determinant
     * 
     * @return determinant
     */

    public double det() {
        return new LUDecomposition(this).det();
    }

    /**
     * Matrix rank
     * 
     * @return effective numerical rank, obtained from SVD.
     */

    // public int rank () {
    // return new SingularValueDecomposition(this).rank();
    // }
    //
    // /** Matrix condition (2 norm)
    // @return ratio of largest to smallest singular value.
    // */
    //
    // public double cond () {
    // return new SingularValueDecomposition(this).cond();
    // }
    /**
     * Matrix trace.
     * 
     * @return sum of the diagonal elements.
     */

    public double trace() {
        double t = 0;
        for (int i = 0; i < Math.min(m, n); i++) {
            t += A[i][i];
        }
        return t;
    }

    /**
     * Generate matrix with random elements
     * 
     * @param m
     *            Number of rows.
     * @param n
     *            Number of colums.
     * @return An m-by-n matrix with uniformly distributed random elements.
     */

    public static Matrix random(int m, int n) {
        Matrix A = new Matrix(m, n);
        double[][] X = A.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                X[i][j] = Math.random();
            }
        }
        return A;
    }

    /**
     * Generate identity matrix
     * 
     * @param m
     *            Number of rows.
     * @param n
     *            Number of colums.
     * @return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
     */

    public static Matrix identity(int m, int n) {
        Matrix A = new Matrix(m, n);
        double[][] X = A.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                X[i][j] = (i == j ? 1.0 : 0.0);
            }
        }
        return A;
    }

    /**
     * Print the matrix to stdout. Line the elements up in columns with a
     * Fortran-like 'Fw.d' style format.
     * 
     * @param w
     *            Column width.
     * @param d
     *            Number of digits after the decimal.
     */

    public void print(int w, int d) {
        print(new PrintWriter(System.out, true), w, d);
    }

    /**
     * Print the matrix to the output stream. Line the elements up in columns
     * with a Fortran-like 'Fw.d' style format.
     * 
     * @param output
     *            Output stream.
     * @param w
     *            Column width.
     * @param d
     *            Number of digits after the decimal.
     */

    public void print(PrintWriter output, int w, int d) {
        DecimalFormat format = new DecimalFormat();
        format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));
        format.setMinimumIntegerDigits(1);
        format.setMaximumFractionDigits(d);
        format.setMinimumFractionDigits(d);
        format.setGroupingUsed(false);
        print(output, format, w + 2);
    }

    /**
     * Print the matrix to stdout. Line the elements up in columns. Use the
     * format object, and right justify within columns of width characters. Note
     * that is the matrix is to be read back in, you probably will want to use a
     * NumberFormat that is set to US Locale.
     * 
     * @param format
     *            A Formatting object for individual elements.
     * @param width
     *            Field width for each column.
     * @see java.text.DecimalFormat#setDecimalFormatSymbols
     */

    public void print(NumberFormat format, int width) {
        print(new PrintWriter(System.out, true), format, width);
    }

    // DecimalFormat is a little disappointing coming from Fortran or C's
    // printf.
    // Since it doesn't pad on the left, the elements will come out different
    // widths. Consequently, we'll pass the desired column width in as an
    // argument and do the extra padding ourselves.

    /**
     * Print the matrix to the output stream. Line the elements up in columns.
     * Use the format object, and right justify within columns of width
     * characters. Note that is the matrix is to be read back in, you probably
     * will want to use a NumberFormat that is set to US Locale.
     * 
     * @param output
     *            the output stream.
     * @param format
     *            A formatting object to format the matrix elements
     * @param width
     *            Column width.
     * @see java.text.DecimalFormat#setDecimalFormatSymbols
     */

    public void print(PrintWriter output, NumberFormat format, int width) {
        output.println(); // start on new line.
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                String s = format.format(A[i][j]); // format the number
                int padding = Math.max(1, width - s.length()); // At _least_ 1
                // space
                for (int k = 0; k < padding; k++)
                    output.print(' ');
                output.print(s);
            }
            output.println();
        }
        output.println(); // end with blank line.
    }

    /**
     * Read a matrix from a stream. The format is the same the print method, so
     * printed matrices can be read back in (provided they were printed using US
     * Locale). Elements are separated by whitespace, all the elements for each
     * row appear on a single line, the last row is followed by a blank line.
     * 
     * @param input
     *            the input stream.
     */

    public static Matrix read(BufferedReader input) throws java.io.IOException {
        StreamTokenizer tokenizer = new StreamTokenizer(input);

        // Although StreamTokenizer will parse numbers, it doesn't recognize
        // scientific notation (E or D); however, Double.valueOf does.
        // The strategy here is to disable StreamTokenizer's number parsing.
        // We'll only get whitespace delimited words, EOL's and EOF's.
        // These words should all be numbers, for Double.valueOf to parse.

        tokenizer.resetSyntax();
        tokenizer.wordChars(0, 255);
        tokenizer.whitespaceChars(0, ' ');
        tokenizer.eolIsSignificant(true);
        java.util.Vector v = new java.util.Vector();

        // Ignore initial empty lines
        while (tokenizer.nextToken() == StreamTokenizer.TT_EOL)
            ;
        if (tokenizer.ttype == StreamTokenizer.TT_EOF)
            throw new java.io.IOException("Unexpected EOF on matrix read.");
        do {
            v.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st
            // row.
        } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);

        int n = v.size(); // Now we've got the number of columns!
        double row[] = new double[n];
        for (int j = 0; j < n; j++)
            // extract the elements of the 1st row.
            row[j] = ((Double) v.elementAt(j)).doubleValue();
        v.removeAllElements();
        v.addElement(row); // Start storing rows instead of columns.
        while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) {
            // While non-empty lines
            v.addElement(row = new double[n]);
            int j = 0;
            do {
                if (j >= n)
                    throw new java.io.IOException("Row " + v.size() + " is too long.");
                row[j++] = Double.valueOf(tokenizer.sval).doubleValue();
            } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
            if (j < n)
                throw new java.io.IOException("Row " + v.size() + " is too short.");
        }
        int m = v.size(); // Now we've got the number of rows.
        double[][] A = new double[m][];
        v.copyInto(A); // copy the rows out of the vector
        return new Matrix(A);
    }

    @Override
    public String toString() {
        StringBuffer buf = new StringBuffer();
        for (int i = 0; i < getRowDimension(); i++) {

            for (int j = 0; j < getColumnDimension(); j++) {
                buf.append(get(i, j));
                buf.append(" ");
            }
            buf.append("\n");
        }

        return buf.toString();
    }

    /*
     * ------------------------ Private Methods ------------------------
     */

    /** Check if size(A) == size(B) * */

    private void checkMatrixDimensions(Matrix B) {
        if (B.m != m || B.n != n) {
            throw new IllegalArgumentException("Matrix dimensions must agree.");
        }
    }
}

/**
 * LU Decomposition.
 * <P>
 * For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit
 * lower triangular matrix L, an n-by-n upper triangular matrix U, and a
 * permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then L
 * is m-by-m and U is m-by-n.
 * <P>
 * The LU decompostion with pivoting always exists, even if the matrix is
 * singular, so the constructor will never fail. The primary use of the LU
 * decomposition is in the solution of square systems of simultaneous linear
 * equations. This will fail if isNonsingular() returns false.
 */
class LUDecomposition implements java.io.Serializable {
    private static final long serialVersionUID = 1L;

    /*
     * ------------------------ Class variables ------------------------
     */

    /**
     * Array for internal storage of decomposition.
     * 
     * @serial internal array storage.
     */
    private final double[][] LU;

    /**
     * Row and column dimensions, and pivot sign.
     * 
     * @serial column dimension.
     * @serial row dimension.
     * @serial pivot sign.
     */
    private final int m, n;

    private int pivsign;

    /**
     * Internal storage of pivot vector.
     * 
     * @serial pivot vector.
     */
    private final int[] piv;

    /*
     * ------------------------ Constructor ------------------------
     */

    /**
     * LU Decomposition, a structure to access L, U and piv.
     * 
     * @param A
     *            Rectangular matrix
     */
    public LUDecomposition(Matrix A) {

        // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

        LU = A.getArrayCopy();
        m = A.getRowDimension();
        n = A.getColumnDimension();
        piv = new int[m];
        for (int i = 0; i < m; i++) {
            piv[i] = i;
        }
        pivsign = 1;
        double[] LUrowi;
        double[] LUcolj = new double[m];

        // Outer loop.

        for (int j = 0; j < n; j++) {

            // Make a copy of the j-th column to localize references.

            for (int i = 0; i < m; i++) {
                LUcolj[i] = LU[i][j];
            }

            // Apply previous transformations.

            for (int i = 0; i < m; i++) {
                LUrowi = LU[i];

                // Most of the time is spent in the following dot product.

                int kmax = Math.min(i, j);
                double s = 0.0;
                for (int k = 0; k < kmax; k++) {
                    s += LUrowi[k] * LUcolj[k];
                }

                LUrowi[j] = LUcolj[i] -= s;
            }

            // Find pivot and exchange if necessary.

            int p = j;
            for (int i = j + 1; i < m; i++) {
                if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
                    p = i;
                }
            }
            if (p != j) {
                for (int k = 0; k < n; k++) {
                    double t = LU[p][k];
                    LU[p][k] = LU[j][k];
                    LU[j][k] = t;
                }
                int k = piv[p];
                piv[p] = piv[j];
                piv[j] = k;
                pivsign = -pivsign;
            }

            // Compute multipliers.

            if (j < m & LU[j][j] != 0.0) {
                for (int i = j + 1; i < m; i++) {
                    LU[i][j] /= LU[j][j];
                }
            }
        }
    }

    /*
     * ------------------------ Temporary, experimental code.
     * ------------------------\
     * 
     * \ LU Decomposition, computed by Gaussian elimination. <P> This
     * constructor computes L and U with the "daxpy"-based elimination algorithm
     * used in LINPACK and MATLAB. In Java, we suspect the dot-product, Crout
     * algorithm will be faster. We have temporarily included this constructor
     * until timing experiments confirm this suspicion. <P> @param A Rectangular
     * matrix @param linpackflag Use Gaussian elimination. Actual value ignored.
     * 
     * @return Structure to access L, U and piv. \
     * 
     * public LUDecomposition (Matrix A, int linpackflag) { // Initialize. LU =
     * A.getArrayCopy(); m = A.getRowDimension(); n = A.getColumnDimension();
     * piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign =
     * 1; // Main loop. for (int k = 0; k < n; k++) { // Find pivot. int p = k;
     * for (int i = k+1; i < m; i++) { if (Math.abs(LU[i][k]) >
     * Math.abs(LU[p][k])) { p = i; } } // Exchange if necessary. if (p != k) {
     * for (int j = 0; j < n; j++) { double t = LU[p][j]; LU[p][j] = LU[k][j];
     * LU[k][j] = t; } int t = piv[p]; piv[p] = piv[k]; piv[k] = t; pivsign =
     * -pivsign; } // Compute multipliers and eliminate k-th column. if
     * (LU[k][k] != 0.0) { for (int i = k+1; i < m; i++) { LU[i][k] /= LU[k][k];
     * for (int j = k+1; j < n; j++) { LU[i][j] -= LU[i][k]LU[k][j]; } } } } } \
     * ------------------------ End of temporary code. ------------------------
     */

    /*
     * ------------------------ Public Methods ------------------------
     */

    /**
     * Is the matrix nonsingular?
     * 
     * @return true if U, and hence A, is nonsingular.
     */
    public boolean isNonsingular() {
        for (int j = 0; j < n; j++) {
            if (LU[j][j] == 0)
                return false;
        }
        return true;
    }

    /**
     * Return lower triangular factor
     * 
     * @return L
     */
    public Matrix getL() {
        Matrix X = new Matrix(m, n);
        double[][] L = X.getArray();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i > j) {
                    L[i][j] = LU[i][j];
                } else if (i == j) {
                    L[i][j] = 1.0;
                } else {
                    L[i][j] = 0.0;
                }
            }
        }
        return X;
    }

    /**
     * Return upper triangular factor
     * 
     * @return U
     */
    public Matrix getU() {
        Matrix X = new Matrix(n, n);
        double[][] U = X.getArray();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (i <= j) {
                    U[i][j] = LU[i][j];
                } else {
                    U[i][j] = 0.0;
                }
            }
        }
        return X;
    }

    /**
     * Return pivot permutation vector
     * 
     * @return piv
     */
    public int[] getPivot() {
        int[] p = new int[m];
        for (int i = 0; i < m; i++) {
            p[i] = piv[i];
        }
        return p;
    }

    /**
     * Return pivot permutation vector as a one-dimensional double array
     * 
     * @return (double) piv
     */
    public double[] getDoublePivot() {
        double[] vals = new double[m];
        for (int i = 0; i < m; i++) {
            vals[i] = piv[i];
        }
        return vals;
    }

    /**
     * Determinant
     * 
     * @return det(A)
     * @exception IllegalArgumentException
     *                Matrix must be square
     */
    public double det() {
        if (m != n) {
            throw new IllegalArgumentException("Matrix must be square.");
        }
        double d = pivsign;
        for (int j = 0; j < n; j++) {
            d *= LU[j][j];
        }
        return d;
    }

    /**
     * Solve A*X = B
     * 
     * @param B
     *            A Matrix with as many rows as A and any number of columns.
     * @return X so that L*U*X = B(piv,:)
     * @exception IllegalArgumentException
     *                Matrix row dimensions must agree.
     * @exception RuntimeException
     *                Matrix is singular.
     */
    public Matrix solve(Matrix B) {
        if (B.getRowDimension() != m) {
            throw new IllegalArgumentException("Matrix row dimensions must agree.");
        }
        if (!this.isNonsingular()) {
            throw new RuntimeException("Matrix is singular.");
        }

        // Copy right hand side with pivoting
        int nx = B.getColumnDimension();
        Matrix Xmat = B.getMatrix(piv, 0, nx - 1);
        double[][] X = Xmat.getArray();

        // Solve L*Y = B(piv,:)
        for (int k = 0; k < n; k++) {
            for (int i = k + 1; i < n; i++) {
                for (int j = 0; j < nx; j++) {
                    X[i][j] -= X[k][j] * LU[i][k];
                }
            }
        }
        // Solve U*X = Y;
        for (int k = n - 1; k >= 0; k--) {
            for (int j = 0; j < nx; j++) {
                X[k][j] /= LU[k][k];
            }
            for (int i = 0; i < k; i++) {
                for (int j = 0; j < nx; j++) {
                    X[i][j] -= X[k][j] * LU[i][k];
                }
            }
        }
        return Xmat;
    }
}