BigramRelativeFrequencyTuple.java Source code

Java tutorial

Introduction

Here is the source code for BigramRelativeFrequencyTuple.java

Source

/*
 * Cloud9: A Hadoop toolkit for working with big data
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.BinSedesTuple;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;

public class BigramRelativeFrequencyTuple extends Configured implements Tool {
    private static final Logger LOG = Logger.getLogger(BigramRelativeFrequencyTuple.class);
    private static final TupleFactory TUPLE_FACTORY = TupleFactory.getInstance();

    protected static class MyMapper extends Mapper<LongWritable, Text, Tuple, FloatWritable> {
        private static final FloatWritable ONE = new FloatWritable(1);

        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();

            String prev = null;
            StringTokenizer itr = new StringTokenizer(line);
            while (itr.hasMoreTokens()) {
                String cur = itr.nextToken();

                // Emit only if we have an actual bigram.
                if (prev != null) {

                    // Simple way to truncate tokens that are too long.
                    if (cur.length() > 100) {
                        cur = cur.substring(0, 100);
                    }

                    if (prev.length() > 100) {
                        prev = prev.substring(0, 100);
                    }

                    Tuple tuple1 = TUPLE_FACTORY.newTuple();
                    tuple1.append(prev);
                    tuple1.append(cur);
                    context.write(tuple1, ONE);

                    Tuple tuple2 = TUPLE_FACTORY.newTuple();
                    tuple2.append(prev);
                    tuple2.append("*");
                    context.write(tuple2, ONE);
                }
                prev = cur;
            }
        }
    }

    protected static class MyCombiner extends Reducer<Tuple, FloatWritable, Tuple, FloatWritable> {
        private final static FloatWritable SUM = new FloatWritable();

        @Override
        public void reduce(Tuple key, Iterable<FloatWritable> values, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            Iterator<FloatWritable> iter = values.iterator();
            while (iter.hasNext()) {
                sum += iter.next().get();
            }
            SUM.set(sum);
            context.write(key, SUM);
        }
    }

    protected static class MyReducer extends Reducer<Tuple, FloatWritable, Tuple, FloatWritable> {
        private static final FloatWritable VALUE = new FloatWritable();
        private float marginal = 0.0f;

        @Override
        public void reduce(Tuple key, Iterable<FloatWritable> values, Context context)
                throws IOException, InterruptedException {
            float sum = 0.0f;
            Iterator<FloatWritable> iter = values.iterator();
            while (iter.hasNext()) {
                sum += iter.next().get();
            }

            if (key.get(1).equals("*")) {
                VALUE.set(sum);
                context.write(key, VALUE);
                marginal = sum;
            } else {
                VALUE.set(sum / marginal);
                context.write(key, VALUE);
            }
        }
    }

    protected static class MyPartitioner extends Partitioner<Tuple, FloatWritable> {
        @Override
        public int getPartition(Tuple key, FloatWritable value, int numReduceTasks) {
            try {
                return (((String) key.get(0)).hashCode() & Integer.MAX_VALUE) % numReduceTasks;
            } catch (ExecException e) {
                e.printStackTrace();
                return 0;
            }
        }
    }

    private BigramRelativeFrequencyTuple() {
    }

    private static int printUsage() {
        System.out.println("usage: [input-path] [output-path] [num-reducers]");
        ToolRunner.printGenericCommandUsage(System.out);
        return -1;
    }

    /**
     * Runs this tool.
     */
    public int run(String[] args) throws Exception {
        if (args.length != 3) {
            printUsage();
            return -1;
        }

        String inputPath = args[0];
        String outputPath = args[1];
        int reduceTasks = Integer.parseInt(args[2]);

        LOG.info("Tool name: " + BigramRelativeFrequencyTuple.class.getSimpleName());
        LOG.info(" - input path: " + inputPath);
        LOG.info(" - output path: " + outputPath);
        LOG.info(" - num reducers: " + reduceTasks);

        Job job = Job.getInstance(getConf());
        job.setJobName(BigramRelativeFrequencyTuple.class.getSimpleName());
        job.setJarByClass(BigramRelativeFrequencyTuple.class);

        job.setNumReduceTasks(reduceTasks);

        FileInputFormat.setInputPaths(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));

        job.setMapOutputKeyClass(BinSedesTuple.class);
        job.setMapOutputValueClass(FloatWritable.class);
        job.setOutputKeyClass(BinSedesTuple.class);
        job.setOutputValueClass(FloatWritable.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        job.setMapperClass(MyMapper.class);
        job.setCombinerClass(MyCombiner.class);
        job.setReducerClass(MyReducer.class);
        job.setPartitionerClass(MyPartitioner.class);

        // Delete the output directory if it exists already.
        Path outputDir = new Path(outputPath);
        FileSystem.get(getConf()).delete(outputDir, true);

        long startTime = System.currentTimeMillis();
        job.waitForCompletion(true);
        System.out.println("Job Finished in " + (System.currentTimeMillis() - startTime) / 1000.0 + " seconds");

        return 0;
    }

    /**
     * Dispatches command-line arguments to the tool via the {@code ToolRunner}.
     */
    public static void main(String[] args) throws Exception {
        ToolRunner.run(new BigramRelativeFrequencyTuple(), args);
    }
}