LabeledItemSet.java Source code

Java tutorial

Introduction

Here is the source code for LabeledItemSet.java

Source

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * LabeledItemSet.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 *
 */

import weka.associations.ItemSet;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Hashtable;

/**
 * Class for storing a set of items together with a  class label. Item sets are stored in a lexicographic
 * order, which is determined by the header information of the set of instances
 * used for generating the set of items. All methods in this class assume that
 * item sets are stored in lexicographic order.
 * The class provides the methods used for item sets in class association rule mining.
 * Because every item set knows its class label the training set can be splitted up virtually.
 *
 * @author Stefan Mutter (mutter@cs.waikato.ac.nz)
 * @version $Revision: 1.5 $
 */

public class LabeledItemSet extends ItemSet implements Serializable, RevisionHandler {

    /** for serialization */
    private static final long serialVersionUID = 4158771925518299903L;

    /** The class label. */
    protected int m_classLabel;

    /** The support of the rule. */
    protected int m_ruleSupCounter;

    /**
     * Constructor
     *
     * @param totalTrans the total number of transactions
     * @param classLabel the class lebel
     */
    public LabeledItemSet(int totalTrans, int classLabel) {

        super(totalTrans);
        m_classLabel = classLabel;
    }

    /**
     * Deletes all item sets that don't have minimum support and have more than maximum support
     * @return the reduced set of item sets
     * @param maxSupport the maximum support
     * @param itemSets the set of item sets to be pruned
     * @param minSupport the minimum number of transactions to be covered
     */
    public static FastVector deleteItemSets(FastVector itemSets, int minSupport, int maxSupport) {

        FastVector newVector = new FastVector(itemSets.size());

        for (int i = 0; i < itemSets.size(); i++) {
            LabeledItemSet current = (LabeledItemSet) itemSets.elementAt(i);
            if ((current.m_ruleSupCounter >= minSupport) && (current.m_ruleSupCounter <= maxSupport))
                newVector.addElement(current);
        }
        return newVector;
    }

    /**
    * Tests if two item sets are equal.
    *
    * @param itemSet another item set
    * @return true if this item set contains the same items as the given one
    */
    public final boolean equals(Object itemSet) {

        if (!(this.equalCondset(itemSet)))
            return false;
        if (m_classLabel != ((LabeledItemSet) itemSet).m_classLabel)
            return false;

        return true;
    }

    /**
     * Compares two item sets
     * @param itemSet an item set
     * @return true if the the item sets are equal, false otherwise
     */
    public final boolean equalCondset(Object itemSet) {

        if ((itemSet == null) || !(itemSet.getClass().equals(this.getClass()))) {
            return false;
        }
        if (m_items.length != ((ItemSet) itemSet).items().length)
            return false;
        for (int i = 0; i < m_items.length; i++)
            if (m_items[i] != ((ItemSet) itemSet).itemAt(i))
                return false;
        return true;
    }

    /**
    * Return a hashtable filled with the given item sets.
    *
    * @param itemSets the set of item sets to be used for filling the hash table
    * @param initialSize the initial size of the hashtable
    * @return the generated hashtable
    */
    public static Hashtable getHashtable(FastVector itemSets, int initialSize) {

        Hashtable hashtable = new Hashtable(initialSize);
        for (int i = 0; i < itemSets.size(); i++) {
            LabeledItemSet current = (LabeledItemSet) itemSets.elementAt(i);
            hashtable.put(current, new Integer(current.m_classLabel));
        }

        return hashtable;
    }

    /**
     * Merges all item sets in the set of (k-1)-item sets
     * to create the (k)-item sets and updates the counters.
     * @return the generated (k)-item sets
     * @param totalTrans the total number of transactions
     * @param itemSets the set of (k-1)-item sets
     * @param size the value of (k-1)
     */
    public static FastVector mergeAllItemSets(FastVector itemSets, int size, int totalTrans) {

        FastVector newVector = new FastVector();
        LabeledItemSet result;
        int numFound, k;

        for (int i = 0; i < itemSets.size(); i++) {
            LabeledItemSet first = (LabeledItemSet) itemSets.elementAt(i);
            out: for (int j = i + 1; j < itemSets.size(); j++) {
                LabeledItemSet second = (LabeledItemSet) itemSets.elementAt(j);
                while (first.m_classLabel != second.m_classLabel) {
                    j++;
                    if (j == itemSets.size())
                        break out;
                    second = (LabeledItemSet) itemSets.elementAt(j);
                }
                result = new LabeledItemSet(totalTrans, first.m_classLabel);
                result.m_items = new int[first.m_items.length];

                // Find and copy common prefix of size 'size'
                numFound = 0;
                k = 0;
                while (numFound < size) {
                    if (first.m_items[k] == second.m_items[k]) {
                        if (first.m_items[k] != -1)
                            numFound++;
                        result.m_items[k] = first.m_items[k];
                    } else
                        break out;
                    k++;
                }

                // Check difference
                while (k < first.m_items.length) {
                    if ((first.m_items[k] != -1) && (second.m_items[k] != -1))
                        break;
                    else {
                        if (first.m_items[k] != -1)
                            result.m_items[k] = first.m_items[k];
                        else
                            result.m_items[k] = second.m_items[k];
                    }
                    k++;
                }
                if (k == first.m_items.length) {
                    result.m_ruleSupCounter = 0;
                    result.m_counter = 0;
                    newVector.addElement(result);
                }
            }
        }

        return newVector;
    }

    /**
     * Splits the class attribute away. Depending on the invert flag, the instances without class attribute or only the class attribute of all instances is returned
     * @param instances the instances
     * @param invert flag; if true only the class attribute remains, otherweise the class attribute is the only attribute that is deleted.
     * @throws Exception exception if instances cannot be splitted
     * @return Instances without the class attribute or instances with only the class attribute
     */
    public static Instances divide(Instances instances, boolean invert) throws Exception {

        Instances newInstances = new Instances(instances);
        if (instances.classIndex() < 0)
            throw new Exception("For class association rule mining a class attribute has to be specified.");
        if (invert) {
            for (int i = 0; i < newInstances.numAttributes(); i++) {
                if (i != newInstances.classIndex()) {
                    newInstances.deleteAttributeAt(i);
                    i--;
                }
            }
            return newInstances;
        } else {
            newInstances.setClassIndex(-1);
            newInstances.deleteAttributeAt(instances.classIndex());
            return newInstances;
        }
    }

    /**
     * Converts the header info of the given set of instances into a set
     * of item sets (singletons). The ordering of values in the header file
     * determines the lexicographic order. Each item set knows its class label.
     * @return a set of item sets, each containing a single item
     * @param instancesNoClass instances without the class attribute
     * @param classes the values of the class attribute sorted according to instances
     * @exception Exception if singletons can't be generated successfully
     */
    public static FastVector singletons(Instances instancesNoClass, Instances classes) throws Exception {

        FastVector cSet, setOfItemSets = new FastVector();
        LabeledItemSet current;

        //make singletons
        for (int i = 0; i < instancesNoClass.numAttributes(); i++) {
            if (instancesNoClass.attribute(i).isNumeric())
                throw new Exception("Can't handle numeric attributes!");
            for (int j = 0; j < instancesNoClass.attribute(i).numValues(); j++) {
                for (int k = 0; k < (classes.attribute(0)).numValues(); k++) {
                    current = new LabeledItemSet(instancesNoClass.numInstances(), k);
                    current.m_items = new int[instancesNoClass.numAttributes()];
                    for (int l = 0; l < instancesNoClass.numAttributes(); l++)
                        current.m_items[l] = -1;
                    current.m_items[i] = j;
                    setOfItemSets.addElement(current);
                }
            }
        }
        return setOfItemSets;
    }

    /**
    * Prunes a set of (k)-item sets using the given (k-1)-item sets.
    *
    * @param toPrune the set of (k)-item sets to be pruned
    * @param kMinusOne the (k-1)-item sets to be used for pruning
    * @return the pruned set of item sets
    */
    public static FastVector pruneItemSets(FastVector toPrune, Hashtable kMinusOne) {

        FastVector newVector = new FastVector(toPrune.size());
        int help, j;

        for (int i = 0; i < toPrune.size(); i++) {
            LabeledItemSet current = (LabeledItemSet) toPrune.elementAt(i);

            for (j = 0; j < current.m_items.length; j++) {
                if (current.m_items[j] != -1) {
                    help = current.m_items[j];
                    current.m_items[j] = -1;
                    if (kMinusOne.get(current) != null
                            && (current.m_classLabel == (((Integer) kMinusOne.get(current)).intValue())))
                        current.m_items[j] = help;
                    else {
                        current.m_items[j] = help;
                        break;
                    }
                }
            }
            if (j == current.m_items.length)
                newVector.addElement(current);
        }
        return newVector;
    }

    /**
     * Outputs the support for an item set.
     *
     * @return the support
     */
    public final int support() {

        return m_ruleSupCounter;
    }

    /**
     * Updates counter of item set with respect to given transaction.
     * @param instanceNoClass instances without the class attribute
     * @param instanceClass the values of the class attribute sorted according to instances
     */
    public final void upDateCounter(Instance instanceNoClass, Instance instanceClass) {

        if (containedBy(instanceNoClass)) {
            m_counter++;
            if (this.m_classLabel == instanceClass.value(0))
                m_ruleSupCounter++;
        }
    }

    /**
     * Updates counter of a specific item set
     * @param itemSets an item sets
     * @param instancesNoClass instances without the class attribute
     * @param instancesClass the values of the class attribute sorted according to instances
     */
    public static void upDateCounters(FastVector itemSets, Instances instancesNoClass, Instances instancesClass) {

        for (int i = 0; i < instancesNoClass.numInstances(); i++) {
            Enumeration enu = itemSets.elements();
            while (enu.hasMoreElements())
                ((LabeledItemSet) enu.nextElement()).upDateCounter(instancesNoClass.instance(i),
                        instancesClass.instance(i));
        }

    }

    /**
     * Generates rules out of item sets
     * @param minConfidence the minimum confidence
     * @param noPrune flag indicating whether the rules are pruned accoridng to the minimum confidence value
     * @return a set of rules
     */
    public final FastVector[] generateRules(double minConfidence, boolean noPrune) {

        FastVector premises = new FastVector(), consequences = new FastVector(), conf = new FastVector();
        FastVector[] rules = new FastVector[3];
        ItemSet premise, consequence;

        // Generate all rules with class in the consequence. 
        premise = new ItemSet(m_totalTransactions);
        consequence = new ItemSet(m_totalTransactions);
        int[] premiseItems = new int[m_items.length];
        int[] consequenceItems = new int[1];
        System.arraycopy(m_items, 0, premiseItems, 0, m_items.length);
        consequence.setItem(consequenceItems);
        premise.setItem(premiseItems);
        consequence.setItemAt(m_classLabel, 0);
        consequence.setCounter(this.m_ruleSupCounter);
        premise.setCounter(this.m_counter);
        premises.addElement(premise);
        consequences.addElement(consequence);
        conf.addElement(new Double((double) this.m_ruleSupCounter / (double) this.m_counter));

        rules[0] = premises;
        rules[1] = consequences;
        rules[2] = conf;
        if (!noPrune)
            pruneRules(rules, minConfidence);

        return rules;
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 1.5 $");
    }
}